Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIapplicationfieldNetworks

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.20230196117TRAINING METHOD FOR SEMI-SUPERVISED LEARNING MODEL, IMAGE PROCESSING METHOD, AND DEVICE
US 22.06.2023
Int.Class G06N 3/0895
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
08Learning methods
0895Weakly supervised learning, e.g. semi-supervised or self-supervised learning
Appl.No 18173310 Applicant HUAWEI TECHNOLOGIES CO., LTD. Inventor Zewei DU

Embodiments of this application disclose a training method for a semi-supervised learning model which can be applied to computer vision in the field of artificial intelligence. The method includes: first predicting classification categories of some unlabeled samples by using a trained first semi-supervised learning model, to obtain a prediction label; and determining whether each prediction label is correct in a one-bit labeling manner, and if prediction is correct, obtaining a correct label (a positive label) of the sample, or if prediction is incorrect, excluding an incorrect label (a negative label) of the sample. Then, in a next training phase, a training set (a first training set) is reconstructed based on the information, and an initial semi-supervised learning model is retrained based on the first training set, to improve prediction accuracy of the model. In one-bit labeling, an annotator only needs to answer “yes” or “no” for the prediction label.

2.20220180975METHODS AND SYSTEMS FOR DETERMINING GENE EXPRESSION PROFILES AND CELL IDENTITIES FROM MULTI-OMIC IMAGING DATA
US 09.06.2022
Int.Class G16B 40/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
30Unsupervised data analysis
Appl.No 17553691 Applicant The Broad Institute, Inc. Inventor Aviv Regev

The present disclosure relates to systems and method of determining transcriptomic profile from omics imaging data. The systems and methods train machine learning methods with intrinsic and extrinsic features of a cell and/or tissue to define transcriptomic profiles of the cell and/or tissue. Applicants utilize a convolutional autoencoder to define cell subtypes from images of the cells.

3.20200272947Orchestrator for machine learning pipeline
US 27.08.2020
Int.Class G06F 15/173
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
163Interprocessor communication
173using an interconnection network, e.g. matrix, shuffle, pyramid, star or snowflake
Appl.No 16284291 Applicant SAP SE Inventor Lukas Carullo

Provided is a system and method for training and validating models in a machine learning pipeline for failure mode analytics. The machine learning pipeline may include an unsupervised training phase, a validation phase and a supervised training and scoring phase. In one example, the method may include receiving an identification of a machine learning model, executing a machine learning pipeline comprising a plurality of services which train the machine learning model via at least one of an unsupervised learning process and a supervised learning process, the machine learning pipeline being controlled by an orchestration module that triggers ordered execution of the services, and storing the trained machine learning model output from the machine learning pipeline in a database associated with the machine learning pipeline.

4.20230135553AI-managed additive manufacturing for value chain networks
US 04.05.2023
Int.Class G05B 17/02
GPHYSICS
05CONTROLLING; REGULATING
BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
17Systems involving the use of models or simulators of said systems
02electric
Appl.No 17942061 Applicant Strong Force VCN Portfolio 2019, LLC Inventor Charles Howard Cella

A distributed manufacturing network information technology system includes a cloud-based additive manufacturing management platform with a user interface, connectivity facilities, data storage facilities, and monitoring facilities. The distributed manufacturing network information technology system includes a set of applications for enabling the additive manufacturing management platform to manage a set of distributed manufacturing network entities. The distributed manufacturing network information technology system includes an artificial intelligence system configured to learn on a training set of outcomes, parameters, and data collected from the distributed manufacturing network entities to optimize manufacturing and value chain workflows.

5.WO/2025/160422AI-BASED ENERGY EDGE PLATFORMS, SYSTEMS, AND METHODS
WO 31.07.2025
Int.Class G06Q 30/06
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
QINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
30Commerce
06Buying, selling or leasing transactions
Appl.No PCT/US2025/012983 Applicant STRONG FORCE EE PORTFOLIO 2022, LLC Inventor CELLA, Charles Howard
An Al -based energy edge platform is provided herein with a wide range of features, components and capabilities for management and improvement of legacy infrastructure, coordination, and orchestration with distributed systems to support important use cases for a range of enterprises. An Al -based energy edge platform may include a graph neural network including a set of nodes respectively representing at least one distributed energy resource (DER) and a set of edges respectively interconnecting the set of nodes, wherein each edge represents at least one energy - related feature among at least two nodes of the set of nodes. The platform may incorporate emerging technologies to enable ecosystem and individual energy edge node efficiencies, agility, engagement, and profitability. Embodiments may forecast, plan for, and manage the demand and utilization of energy in greater distributed environments. Embodiments may employ intelligent provisioning, data aggregation, and analytics to leverage energy market connection, communication, and transaction enablement platforms.
6.12274503Myopia ocular predictive technology and integrated characterization system
US 15.04.2025
Int.Class A61B 3/14
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
3Apparatus for testing the eyes; Instruments for examining the eyes
10Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
14Arrangements specially adapted for eye photography
Appl.No 18778027 Applicant COGNITIVECARE INC. Inventor Venkata Narasimham Peri

According to an embodiment, disclosed is a system comprising a processor wherein the processor is configured to receive an input data comprising an image of an ocular region of a user, clinical data of the user, and external factors; extract, using an image processing module comprising adaptive filtering techniques, ocular characteristics, combine, using a multimodal fusion module, the input data to determine a holistic health embedding; detect, based on a machine learning model and the holistic health embedding, a first output comprising likelihood of myopia, and severity of myopia; predict, based on the machine learning model and the holistic health embedding, a second output comprising an onset of myopia and a progression of myopia in the user; and wherein the machine learning model is a pre-trained model; and wherein the system is configured for myopia prognosis powered by multimodal data.

7.20200311520Training machine learning model
US 01.10.2020
Int.Class G06T 7/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
7Image analysis
Appl.No 16369135 Applicant International Business Machines Corporation Inventor Shiwan Zhao

Techniques are provided for training machine learning model. According to one aspect, a training data is received by one or more processing units. The machine learning model is trained based on the training data, wherein the training comprises: optimizing the machine learning model based on stochastic gradient descent (SGD) by adding a dynamic noise to a gradient of a model parameter of the machine learning model calculated by the SGD.

8.WO/2023/059663SYSTEMS AND METHODS FOR ASSESSMENT OF BODY FAT COMPOSITION AND TYPE VIA IMAGE PROCESSING
WO 13.04.2023
Int.Class A61B 5/00
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
Appl.No PCT/US2022/045706 Applicant THE BROAD INSTITUTE, INC. Inventor KHERA, Amit
The subject matter disclosed herein relates to utilizing the silhouette of an individual to measure body fat volume and distribution. Particular examples relates to providing a system, a computer-implemented method, and a computer program product to utilize a binary outline, or silhouette, to predict the individual's fat depot volumes with machine learning models.
9.20200342307Swarm fair deep reinforcement learning
US 29.10.2020
Int.Class G06N 3/08
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
08Learning methods
Appl.No 16395187 Applicant International Business Machines Corporation Inventor Aaron K. Baughman

Fair deep reinforcement learning is provided. A microstate of an environment and reaction of items in a plurality of microstates within the environment are observed after an agent performs an action in the environment. Semi-supervised training is utilized to determine bias weights corresponding to the action for the microstate of the environment and the reaction of the items in the plurality of microstates within the environment. The bias weights from the semi-supervised training are merged with non-bias weights using an artificial neural network. Over time, it is determined where bias is occurring in the semi-supervised training based on merging the bias weights with the non-bias weights in the artificial neural network. A deep reinforcement learning model that decreases reliance on the bias weights is generated based on determined bias to increase fairness.

10.20200202436Method and system using machine learning for prediction of stocks and/or other market instruments price volatility, movements and future pricing by applying random forest based techniques
US 25.06.2020
Int.Class G06N 3/08
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
08Learning methods
Appl.No 16783457 Applicant Dhruv Siddharth Krishnan Inventor Dhruv Siddharth Krishnan

A method for providing stock predictive information by a cloud-based computing system implementing a random forest algorithm via a machine learning model by receiving a set of stock data from multiple sources of stock data wherein the set of stock data at least comprises stock prices at the open and close of a market, changes in stock prices during the open and close of a market, and real-time stock data; defining a range in time contained in a window defined of an initial selected month, a day or real-time period and an end of the selected month, day and real-time period; applying the random forest model to the set of stock data by creating multiple decision trees to predict a stock price in a quantified period, amount or percentage change in a stock price; and presenting the predicted stock price in a graphic user interface to an user.