Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIapplicationfieldLifeAndMedicalSciencesNeuroscienceNeurorobotics

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.20220180975METHODS AND SYSTEMS FOR DETERMINING GENE EXPRESSION PROFILES AND CELL IDENTITIES FROM MULTI-OMIC IMAGING DATA
US 09.06.2022
Int.Class G16B 40/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
30Unsupervised data analysis
Appl.No 17553691 Applicant The Broad Institute, Inc. Inventor Aviv Regev

The present disclosure relates to systems and method of determining transcriptomic profile from omics imaging data. The systems and methods train machine learning methods with intrinsic and extrinsic features of a cell and/or tissue to define transcriptomic profiles of the cell and/or tissue. Applicants utilize a convolutional autoencoder to define cell subtypes from images of the cells.

2.WO/2023/059663SYSTEMS AND METHODS FOR ASSESSMENT OF BODY FAT COMPOSITION AND TYPE VIA IMAGE PROCESSING
WO 13.04.2023
Int.Class A61B 5/00
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
Appl.No PCT/US2022/045706 Applicant THE BROAD INSTITUTE, INC. Inventor KHERA, Amit
The subject matter disclosed herein relates to utilizing the silhouette of an individual to measure body fat volume and distribution. Particular examples relates to providing a system, a computer-implemented method, and a computer program product to utilize a binary outline, or silhouette, to predict the individual's fat depot volumes with machine learning models.
3.20230132247APPARATUS AND METHODS FOR MACHINE LEARNING TO IDENTIFY AND DIAGNOSE INTRACRANIAL HEMORRHAGES
US 27.04.2023
Int.Class A61B 5/02
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
Appl.No 17508993 Applicant Benjamin Steven Hopkins Inventor Benjamin Steven Hopkins

In some embodiments, an apparatus includes providing a representation of a set of digital medical images to a first machine learning model to define a feature vector associated with a presence of an intracranial hemorrhage. A representation of the set of digital medical images is provided to a second machine learning model to define a second feature vector associated with a volume of the intracranial hemorrhage. Using a third machine learning model, a set of EMRs associated with risk factors for a predefined indication is analyzed to define a third feature vector. The first, second and third feature vectors are provided as inputs to a fourth machine learning model to determine a metric associated with an applicability of a specific treatment associated with a predefined indication. An alert is sent to relevant healthcare providers and relevant tests, procedures or bloodwork are ordered for the predefined indication.

4.12274503Myopia ocular predictive technology and integrated characterization system
US 15.04.2025
Int.Class A61B 3/14
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
3Apparatus for testing the eyes; Instruments for examining the eyes
10Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
14Arrangements specially adapted for eye photography
Appl.No 18778027 Applicant COGNITIVECARE INC. Inventor Venkata Narasimham Peri

According to an embodiment, disclosed is a system comprising a processor wherein the processor is configured to receive an input data comprising an image of an ocular region of a user, clinical data of the user, and external factors; extract, using an image processing module comprising adaptive filtering techniques, ocular characteristics, combine, using a multimodal fusion module, the input data to determine a holistic health embedding; detect, based on a machine learning model and the holistic health embedding, a first output comprising likelihood of myopia, and severity of myopia; predict, based on the machine learning model and the holistic health embedding, a second output comprising an onset of myopia and a progression of myopia in the user; and wherein the machine learning model is a pre-trained model; and wherein the system is configured for myopia prognosis powered by multimodal data.

5.08527432Semi-supervised learning based on semiparametric regularization
US 03.09.2013
Int.Class G06F 15/18
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
18in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines
Appl.No 12538849 Applicant Guo Zhen Inventor Guo Zhen

Semi-supervised learning plays an important role in machine learning and data mining. The semi-supervised learning problem is approached by developing semiparametric regularization, which attempts to discover the marginal distribution of the data to learn the parametric function through exploiting the geometric distribution of the data. This learned parametric function can then be incorporated into the supervised learning on the available labeled data as the prior knowledge. A semi-supervised learning approach is provided which incorporates the unlabeled data into the supervised learning by a parametric function learned from the whole data including the labeled and unlabeled data. The parametric function reflects the geometric structure of the marginal distribution of the data. Furthermore, the proposed approach which naturally extends to the out-of-sample data is an inductive learning method in nature.

6.WO/2023/141277SYSTEMS AND METHODS FOR SKIN BIOMOLECULAR PROFILE ASSESSMENT USING ARTIFICIAL INTELLIGENCE
WO 27.07.2023
Int.Class A61B 5/00
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
Appl.No PCT/US2023/011249 Applicant VANDERBILT UNIVERSITY Inventor MARASCO, Christina, C.
Skin biomolecular profile assessment methods and systems that can analyze the molecular composition of the skin using molecular-level, user-specific data to assess an individual's skin state and/or disease state are described herein. An example method includes receiving skin data associated with a subject, where the skin data includes a biomolecular profile. The method also includes inputting the skin data into a trained artificial intelligence (AI) model and receiving, from the trained AI model, a skin care prediction.
7.20230419170SYSTEM AND METHOD FOR EFFICIENT MACHINE LEARNING
US 28.12.2023
Int.Class G06N 20/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
20Machine learning
Appl.No 17887056 Applicant Fractal Analytics Private Limited Inventor Abhishek Chopde

Systems and methods employ knowledge distillation for efficient machine learning. Systems and methods integrate self-supervised learning, supervised learning, semi-supervised learning and active learning, each of which learning is executed in an iterative fashion. The system comprises three main components: a database server, a data analytics system and a standard dashboard. The database server contains real-time inventory images as well as historical images of each product type. The data analytics system is executed by a computer processor configured to apply a multi-head self-supervised learning-based deep neural network. The standard dashboard is configured to output a report regarding the object information.

8.WO/2021/211787SYSTEMS AND METHODS FOR QUANTIFICATION OF LIVER FIBROSIS WITH MRI AND DEEP LEARNING
WO 21.10.2021
Int.Class G16H 50/20
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
20for computer-aided diagnosis, e.g. based on medical expert systems
Appl.No PCT/US2021/027398 Applicant CHILDREN'S HOSPITAL MEDICAL CENTER Inventor DILLMAN, Jonathan
Embodiments provide a deep learning framework to accurately segment liver and spleen using a convolutional neural network with both short and long residual connections to extract their radiomic and deep features from multiparametric MRI. Embodiments will provide an "ensemble" deep learning model to quantify biopsy derived liver fibrosis stage and percentage using the integration of multiparametric MRI radiomic and deep features, MRE data, as well as routinely available clinical data. Embodiments will provide a deep learning model to quantify MRE-derived liver stiffness using multiparametric MRI, radiomic and deep features and routinely-available clinical data.
9.WO/2020/049182COGNITIVE COMPUTING METHODS AND SYSTEMS BASED ON BIOLOGICAL NEURAL NETWORKS
WO 12.03.2020
Int.Class G06N 3/06
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
Appl.No PCT/EP2019/073911 Applicant ALPVISION S.A. Inventor JORDAN, Frédéric
A Biological Neural Network (BNN) core unit comprising a neural cell culture, an input stimulation unit, an output readout unit may be controlled through its various life cycles to provide data processing functionality. An automation system comprising an environmental and chemical controller unit adapted to operate with the BNN stimulation and readout data interfaces facilitates the monitoring and adaptation of the BNN core unit parameters. Pre-processing and post-processing of the BNN interface signals may further facilitate the training and reinforcement learning by the BNN. Multiple BNN core units may also be assembled together as a stack. The proposed system provides a BNN Operating System as a core component for a wetware server to receive, process and transmit data for different client applications without exposing the BNN core unit components to the client user while requiring significantly less energy than conventional silicon-based hardware and software information processing for high-level cognitive computing tasks.
10.20210334657Cognitive computing methods and systems based on biological neural networks
US 28.10.2021
Int.Class G06F 17/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
Appl.No 17274020 Applicant ALPVISION S.A. Inventor Frederic Jordan

A Biological Neural Network (BNN) core unit comprising a neural cell culture, an input stimulation unit, an output readout unit may be controlled through its various life cycles to provide data processing functionality. An automation system comprising an environmental and chemical controller unit adapted to operate with the BNN stimulation and readout data interfaces facilitates the monitoring and adaptation of the BNN core unit parameters. Pre-processing and post-processing of the BNN interface signals may further facilitate the training and reinforcement learning by the BNN. Multiple BNN core units may also be assembled together as a stack. The proposed system provides a BNN Operating System as a core component for a wetware server to receive, process and transmit data for different client applications without exposing the BNN core unit components to the client user while requiring significantly less energy than conventional silicon-based hardware and software information processing for high-level cognitive computing tasks.