Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIapplicationfieldLawSocialAndBehavioralSciences

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.WO/2024/178442BLOCKCHAIN BASED ARTIFICIAL INTELLIGENCE RISK DETECTION AND INTERVENTION SYSTEMS AND METHODS
WO 29.08.2024
Int.Class G06Q 20/40
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
QINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
20Payment architectures, schemes or protocols
38Payment protocols; Details thereof
40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check of credit lines or negative lists
Appl.No PCT/US2024/026097 Applicant MENDEZ VIERA, Janelle Marina Inventor MENDEZ VIERA, Janelle Marina
Disclosed herein are methods and systems related to fraud detection, risk assessment, and intervention. More specifically, this is related to conducting and monitoring transactions on a blockchain through the use of artificial intelligence, Al, and machine learning. This combination can be applied to financial systems to create an Artificial Intelligence Financial Technology Blockchain, AIFTB. The AIFTB is able to receive a variety of data and use it to predict actions being taken by users and detect if there are any risks or legal concerns with the activity'. The AIFTB is then able to apply its training to execute smart contracts on the blockchain based on the risk and legality of the data it received. Finally it will alert appropriate authorities based on the predictions.
2.20140188462System and method for analyzing ambiguities in language for natural language processing
US 03.07.2014
Int.Class G06F 17/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
Appl.No 14201974 Applicant Zadeh Lotfi A. Inventor Zadeh Lotfi A.

Specification covers new algorithms, methods, and systems for artificial intelligence, soft computing, and deep learning/recognition, e.g., image recognition (e.g., for action, gesture, emotion, expression, biometrics, fingerprint, facial, OCR (text), background, relationship, position, pattern, and object), large number of images (“Big Data”) analytics, machine learning, training schemes, crowd-sourcing (using experts or humans), feature space, clustering, classification, similarity measures, optimization, search engine, ranking, question-answering system, soft (fuzzy or unsharp) boundaries/impreciseness/ambiguities/fuzziness in language, Natural Language Processing (NLP), Computing-with-Words (CWW), parsing, machine translation, sound and speech recognition, video search and analysis (e.g. tracking), image annotation, geometrical abstraction, image correction, semantic web, context analysis, data reliability (e.g., using Z-number (e.g., “About 45 minutes; Very sure”)), rules engine, control system, autonomous vehicle, self-diagnosis and self-repair robots, system diagnosis, medical diagnosis, biomedicine, data mining, event prediction, financial forecasting, economics, risk assessment, e-mail management, database management, indexing and join operation, memory management, and data compression.

3.10303771Utilizing machine learning models to identify insights in a document
US 28.05.2019
Int.Class G06F 17/27
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
20Handling natural language data
27Automatic analysis, e.g. parsing, orthograph correction
Appl.No 15896922 Applicant Capital One Services, LLC Inventor Joni Bridget Jezewski

A device receives document information associated with a document, and receives a request to identify insights in the document information. The device performs, based on the request, natural language processing on the document information to identify words, phrases, and sentences in the document information, and utilizes a first machine learning model with the words, the phrases, and the sentences to identify information indicating abstract insights, concrete insights, and non-insights in the document. The device utilizes a second machine learning model to match the abstract insights with particular concrete insights that are different than the concrete insights, and utilizes a third machine learning model to determine particular insights based on the non-insights. The device generates an insight document that includes the concrete insights, the abstract insights matched with the particular concrete insights, and the particular insights determined based on the non-insights.

4.20140180975INSTANCE WEIGHTED LEARNING MACHINE LEARNING MODEL
US 26.06.2014
Int.Class G06N 99/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
99Subject matter not provided for in other groups of this subclass
Appl.No 13725653 Applicant INSIDESALES.COM, INC. Inventor Martinez Tony Ramon

An instance weighted learning (IWL) machine learning model. In one example embodiment, a method of employing an IWL machine learning model to train a classifier may include determining a quality value that should be associated with each machine learning training instance in a temporal sequence of reinforcement learning machine learning training instances, associating the corresponding determined quality value with each of the machine learning training instances, and training a classifier using each of the machine learning training instances. Each of the machine learning training instances includes a state-action pair and is weighted during the training based on its associated quality value using a weighting factor that weights different quality values differently such that the classifier learns more from a machine learning training instance with a higher quality value than from a machine learning training instance with a lower quality value.

5.2013364041Instance weighted learning machine learning model
AU 09.07.2015
Int.Class G06F 15/18
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
18in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines
Appl.No 2013364041 Applicant InsideSales.com, Inc. Inventor Martinez, Tony Ramon
An instance weighted learning (IWL) machine learning model. In one example embodiment, a method of employing an IWL machine learning model to train a classifier may include determining a quality value that should be associated with each machine learning training instance in a temporal sequence of reinforcement learning machine learning training instances, associating the corresponding determined quality value with each of the machine learning training instances, and training a classifier using each of the machine learning training instances. Each of the machine learning training instances includes a state-action pair and is weighted during the training based on its associated quality value using a weighting factor that weights different quality values differently such that the classifier learns more from a machine learning training instance with a higher quality value than from a machine learning training instance with a lower quality value.
6.2157523Cancer diagnostic method and system
EP 24.02.2010
Int.Class G06F 19/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
19Digital computing or data processing equipment or methods, specially adapted for specific applications
Appl.No 09167833 Applicant BOND UNIVERSITY LTD Inventor ZHANG PING DR
A method and system for classifying tissue suspected of being abnormal as being malignant or benign. The method includes generating a set of selection features, performing statistical applications to generate additional selection features, generating a feature vector for the abnormal tissue, feeding the feature vector into a neural network, and obtaining a result from the neural network as to whether the abnormal tissue is malignant or benign. The method and system may be used for determining the presence of breast cancer.
7.WO/2014/100738INSTANCE WEIGHTED LEARNING MACHINE LEARNING MODEL
WO 26.06.2014
Int.Class G06F 15/18
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
18in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines
Appl.No PCT/US2013/077260 Applicant INSIDESALES.COM, INC. Inventor MARTINEZ, Tony, Ramon
An instance weighted learning (IWL) machine learning model. In one example embodiment, a method of employing an IWL machine learning model to train a classifier may include determining a quality value that should be associated with each machine learning training instance in a temporal sequence of reinforcement learning machine learning training instances, associating the corresponding determined quality value with each of the machine learning training instances, and training a classifier using each of the machine learning training instances. Each of the machine learning training instances includes a state-action pair and is weighted during the training based on its associated quality value using a weighting factor that weights different quality values differently such that the classifier learns more from a machine learning training instance with a higher quality value than from a machine learning training instance with a lower quality value.
8.20190251172Utilizing machine learning models to identify insights in a document
US 15.08.2019
Int.Class G06F 17/27
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
20Handling natural language data
27Automatic analysis, e.g. parsing, orthograph correction
Appl.No 16385496 Applicant Capital One Services, LLC Inventor Joni Bridget Jezewski

A device receives document information associated with a document, and receives a request to identify insights in the document information. The device performs, based on the request, natural language processing on the document information to identify words, phrases, and sentences in the document information, and utilizes a first machine learning model with the words, the phrases, and the sentences to identify information indicating abstract insights, concrete insights, and non-insights in the document. The device utilizes a second machine learning model to match the abstract insights with particular concrete insights that are different than the concrete insights, and utilizes a third machine learning model to determine particular insights based on the non-insights. The device generates an insight document that includes the concrete insights, the abstract insights matched with the particular concrete insights, and the particular insights determined based on the non-insights.

9.20140052678Hierarchical based sequencing machine learning model
US 20.02.2014
Int.Class G06E 1/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
EOPTICAL COMPUTING DEVICES
1Devices for processing exclusively digital data
Appl.No 13590000 Applicant Martinez Tony Ramon Inventor Martinez Tony Ramon

A hierarchical based sequencing (HBS) machine learning model. In one example embodiment, a method of employing an HBS machine learning model to predict multiple interdependent output components of an MOD output decision may include determining an order for multiple interdependent output components of an MOD output decision. The method may also include sequentially training a classifier for each component in the selected order to predict the component based on an input and based on any previous predicted component(s).

10.2009208157Cancer diagnostic method and system
AU 03.09.2009
Int.Class G06N 3/08
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
08Learning methods
Appl.No 2009208157 Applicant Bond University Ltd. Inventor Kumar, Kuldeep
A method and system for classifying tissue suspected of being abnormal as being malignant or benign. The method includes generating a set of selection features, performing statistical applications to generate additional selection features, generating a feature vector for the abnormal tissue, feeding the feature vector into a neural network, and obtaining a result from the neural network as to whether the abnormal tissue is malignant or benign. The method and system may be used for determining the presence of breast cancer. C1O1...o .J x Fig 1 malignan Trained NN