Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIapplicationfieldDocumentManagementAndTextProcessing

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.12274503Myopia ocular predictive technology and integrated characterization system
US 15.04.2025
Int.Class A61B 3/14
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
3Apparatus for testing the eyes; Instruments for examining the eyes
10Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
14Arrangements specially adapted for eye photography
Appl.No 18778027 Applicant COGNITIVECARE INC. Inventor Venkata Narasimham Peri

According to an embodiment, disclosed is a system comprising a processor wherein the processor is configured to receive an input data comprising an image of an ocular region of a user, clinical data of the user, and external factors; extract, using an image processing module comprising adaptive filtering techniques, ocular characteristics, combine, using a multimodal fusion module, the input data to determine a holistic health embedding; detect, based on a machine learning model and the holistic health embedding, a first output comprising likelihood of myopia, and severity of myopia; predict, based on the machine learning model and the holistic health embedding, a second output comprising an onset of myopia and a progression of myopia in the user; and wherein the machine learning model is a pre-trained model; and wherein the system is configured for myopia prognosis powered by multimodal data.

2.20140201126Method and system for feature detection
US 17.07.2014
Int.Class G06N 7/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
7Computing arrangements based on specific mathematical models
Appl.No 14218923 Applicant Lotfi A. Zadeh Inventor Lotfi A. Zadeh

Specification covers new algorithms, methods, and systems for artificial intelligence, soft computing, and deep learning/recognition, e.g., image recognition (e.g., for action, gesture, emotion, expression, biometrics, fingerprint, facial, OCR (text), background, relationship, position, pattern, and object), Big Data analytics, machine learning, training schemes, crowd-sourcing (experts), feature space, clustering, classification, SVM, similarity measures, modified Boltzmann Machines, optimization, search engine, ranking, question-answering system, soft (fuzzy or unsharp) boundaries/impreciseness/ambiguities/fuzziness in language, Natural Language Processing (NLP), Computing-with-Words (CWW), parsing, machine translation, sound and speech recognition, video search and analysis (e.g. tracking), image annotation, geometrical abstraction, image correction, semantic web, context analysis, data reliability, Z-number, Z-Web, Z-factor, rules engine, control system, autonomous vehicle, self-diagnosis and self-repair robots, system diagnosis, medical diagnosis, biomedicine, data mining, event prediction, financial forecasting, economics, risk assessment, e-mail management, database management, indexing and join operation, memory management, data compression, event-centric social network, Image Ad Network.

3.20210097682Disease characterization and response estimation through spatially-invoked radiomics and deep learning fusion
US 01.04.2021
Int.Class G06T 7/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
7Image analysis
Appl.No 17038934 Applicant Case Western Reserve University Inventor Anant Madabhushi

Embodiments discussed herein facilitate training and/or employing a combined model employing machine learning and deep learning outputs to generate prognoses for treatment of tumors. One example embodiment can extract radiomic features from a tumor and a peri-tumoral region; provide the intra-tumoral and peri-tumoral features to two separate machine learning models; provide the segmented tumor and peri-tumoral region to two separate deep learning models; receive predicted prognoses from each of the machine learning models and each of the deep learning models; provide the predicted prognoses to a combined machine learning model; and receive a combined predicted prognosis for the tumor from the combined machine learning model.

4.20220180975METHODS AND SYSTEMS FOR DETERMINING GENE EXPRESSION PROFILES AND CELL IDENTITIES FROM MULTI-OMIC IMAGING DATA
US 09.06.2022
Int.Class G16B 40/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
30Unsupervised data analysis
Appl.No 17553691 Applicant The Broad Institute, Inc. Inventor Aviv Regev

The present disclosure relates to systems and method of determining transcriptomic profile from omics imaging data. The systems and methods train machine learning methods with intrinsic and extrinsic features of a cell and/or tissue to define transcriptomic profiles of the cell and/or tissue. Applicants utilize a convolutional autoencoder to define cell subtypes from images of the cells.

5.20200125928REAL-TIME SUPERVISED MACHINE LEARNING BY MODELS CONFIGURED TO CLASSIFY OFFENSIVENESS OF COMPUTER-GENERATED NATURAL-LANGUAGE TEXT
US 23.04.2020
Int.Class G06N 3/04
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
04Architecture, e.g. interconnection topology
Appl.No 16167092 Applicant CA, Inc. Inventor Ronald Doyle

Provided is a process that includes: receiving a computer generated utterance classified as non-offensive by a machine learning model, wherein the machine learning model is configured to classify input text as offensive or non-offensive; obtaining feedback regarding the computer generated utterance, the feedback being indicative of a reaction by an audience to the computer generated utterance; determining and based on the feedback, whether the computer generated utterance is perceived as offensive by the audience; and causing one or more parameters of the machine learning model to be updated based on the computer generated utterance and a result of the determination of whether the computer generated utterance is perceived as offensive by the audience.

6.20180204111System and method for extremely efficient image and pattern recognition and artificial intelligence platform
US 19.07.2018
Int.Class G06N 3/04
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
04Architecture, e.g. interconnection topology
Appl.No 15919170 Applicant Z Advanced Computing, Inc. Inventor Lotfi A. Zadeh

Specification covers new algorithms, methods, and systems for: Artificial Intelligence; the first application of General-AI (versus Specific, Vertical, or Narrow-AI) (as humans can do); addition of reasoning, inference, and cognitive layers/engines to learning module/engine/layer; soft computing; Information Principle; Stratification; Incremental Enlargement Principle; deep-level/detailed recognition, e.g., image recognition (e.g., for action, gesture, emotion, expression, biometrics, fingerprint, tilted or partial-face, OCR, relationship, position, pattern, and object); Big Data analytics; machine learning; crowd-sourcing; classification; clustering; SVM; similarity measures; Enhanced Boltzmann Machines; Enhanced Convolutional Neural Networks; optimization; search engine; ranking; semantic web; context analysis; question-answering system; soft, fuzzy, or un-sharp boundaries/impreciseness/ambiguities/fuzziness in class or set, e.g., for language analysis; Natural Language Processing (NLP); Computing-with-Words (CWW); parsing; machine translation; music, sound, speech, or speaker recognition; video search and analysis (e.g. tracking); image annotation; image or color correction; data reliability; Z-Number; Z-Web; Z-Factor; rules engine; playing games; control system; autonomous vehicles or drones; self-diagnosis and self-repair robots; system diagnosis; medical diagnosis; genetics; drug discovery; biomedicine; data mining; event prediction; financial forecasting (e.g., for stocks); economics; risk assessment; fraud detection (e.g., for cryptocurrency); e-mail management; database management; indexing and join operation; memory management; data compression; event-centric social network; social behavior; and Image Ad and Referral Networks.

7.20200184278System and method for extremely efficient image and pattern recognition and artificial intelligence platform
US 11.06.2020
Int.Class G06F 16/953
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
16Information retrieval; Database structures therefor; File system structures therefor
90Details of database functions independent of the retrieved data types
95Retrieval from the web
953Querying, e.g. by the use of web search engines
Appl.No 16729944 Applicant Z Advanced Computing, Inc. Inventor Lotfi A. Zadeh

Specification covers new algorithms, methods, and systems for: Artificial Intelligence; the first application of General-AI. (versus Specific, Vertical, or Narrow-AI) (as humans can do) (which also includes Explainable-AI or XAI); addition of reasoning, inference, and cognitive layers/engines to learning module/engine/layer; soft computing; Information Principle; Stratification; Incremental Enlargement Principle; deep-level/detailed recognition, e.g., image recognition (e.g., for action, gesture, emotion, expression, biometrics, fingerprint, tilted or partial-face, OCR, relationship, position, pattern, and object); Big Data analytics; machine learning; crowd-sourcing; classification; clustering; SVM; similarity measures; Enhanced Boltzmann Machines; Enhanced Convolutional Neural Networks; optimization; search engine; ranking; semantic web; context analysis; question-answering system; soft, fuzzy, or un-sharp boundaries/impreciseness/ambiguities/fuzziness in class or set, e.g., for language analysis; Natural Language Processing (NLP); Computing-with-Words (CWW); parsing; machine translation; music, sound, speech, or speaker recognition; video search and analysis (e.g., “intelligent tracking”, with detailed recognition); image annotation; image or color correction; data reliability; Z-Number; Z-Web; Z-Factor; rules engine; playing games; control system; autonomous vehicles or drones; self-diagnosis and self-repair robots; system diagnosis; medical diagnosis/images; genetics; drug discovery; biomedicine; data mining; event prediction; financial forecasting (e.g., for stocks); economics; risk assessment; fraud detection (e.g., for cryptocurrency); e-mail management; database management; indexing and join operation; memory management; data compression; event-centric social network; social behavior; drone/satellite vision/navigation; smart city/home/appliances/IoT; and Image Ad and Referral Networks, for e-commerce, e.g., 3D shoe recognition, from any view angle.

8.3786855AUTOMATED DATA PROCESSING AND MACHINE LEARNING MODEL GENERATION
EP 03.03.2021
Int.Class G06N 5/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
5Computing arrangements using knowledge-based models
Appl.No 19290076 Applicant ACCENTURE GLOBAL SOLUTIONS LTD Inventor HIGGINS LUKE
A device may obtain first data relating to a machine learning model. The device may pre-process the first data to alter the first data to generate second data. The device may process the second data to select a set of features from the second data. The device may analyze the set of features to evaluate a plurality of types of machine learning models with respect to the set of features. The device may select a particular type of machine learning model for the set of features based on analyzing the set of features to evaluate the plurality of types of machine learning models. The device may tune a set of parameters of the particular type of machine learning model to train the machine learning model. The device may receive third data for prediction. The device may provide a prediction using the particular type of machine learning model.
9.20180336185NATURAL LANGUAGE PROCESSING OF FORMATTED DOCUMENTS
US 22.11.2018
Int.Class G06F 17/27
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
20Handling natural language data
27Automatic analysis, e.g. parsing, orthograph correction
Appl.No 15706788 Applicant INTERNATIONAL BUSINESS MACHINES CORPORATION Inventor Patrick W. Fink

Detecting and incorporating formatting characteristics within natural language processing analytics. Source documents are ingested and the markup formatting language is identified by the program. Once identified, the markup language is parsed and examined for formatting characteristics, embedded notes, comments and other metadata. The formatting characteristics of the plain text are extracted, along with the plain text, and converted into a common analysis structure (CAS), or CAS-equivalent structure, which annotates the natural language text together with its respective formatting characteristics. The CAS or CAS-equivalent structures are stored and sent to a natural language processing pipeline for further analysis via complex algorithms and rules. The natural language processing results data are curated to reflect meaningful analysis of the extracted CAS or CAS-equivalent structure.

10.20200125639GENERATING TRAINING DATA FROM A MACHINE LEARNING MODEL TO IDENTIFY OFFENSIVE LANGUAGE
US 23.04.2020
Int.Class G06F 17/27
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
20Handling natural language data
27Automatic analysis, e.g. parsing, orthograph correction
Appl.No 16167026 Applicant CA, Inc. Inventor Ronald Doyle

Provided is a process that includes: obtaining a corpus of unstructured natural language text statements and corresponding responses by responding users, wherein the corresponding responses are responsive natural language text statements or responding-user-expressed scores; obtaining demographic features associated with the responding users; scoring the corresponding responses based on whether the corresponding responses indicate offense to the unstructured natural language text statements to which the corresponding responses correspond in order to form offensiveness scores; forming a training set at least in part by: labeling the unstructured natural language text statements, or n-grams therein, with labels based on the offensiveness scores; and associating the labels with corresponding demographic features of the responding users; and causing a machine learning model to be trained based on the training set, wherein the machine learning model is configured to at least one of: classify natural language utterances as offensive or non-offensive, or generate utterances.