Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages Stemming false Single Family Member true Include NPL false

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

IC:C12Q

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.20210317533UNBIASED IDENTIFICATION OF TUMOR REJECTION MEDIATING NEOEPITOPES
US 14.10.2021
Int.Class C12Q 1/6886
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
1Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
68involving nucleic acids
6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
6883for diseases caused by alterations of genetic material
6886for cancer
Appl.No 17225374 Applicant University of Connecticut Inventor Pramod K. Srivastava

Described herein is an unbiased method of identifying tumor rejection mediating neoepitopes (TRMNs). Putative neoepitopes from a cancer cell exome sequence from a cancer patient are putative neoepitopes are unbiased by MHC binding and/or CD8T* reactivity. By plotting the putative neoepitope IC50s on one axis, and the non-mutated amino acid sequence IC50s on a perpendicular axis to provide a bivariate scatter plot, novel TRMNs are identified TRMNs the neoepitopes in the bivariate scatter plot which are in the space greater than 501 nM on the x-axis and greater than 501 nM on the y-axis. Peptides and nucleic acids for expressing peptides including the TRMNs are also described.

2.WO/2021/205013COMPOSITIONS AND METHODS FOR TREATING COVID-19
WO 14.10.2021
Int.Class C12Q 1/6883
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
1Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
68involving nucleic acids
6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
6883for diseases caused by alterations of genetic material
Appl.No PCT/EP2021/059329 Applicant SITOKINE LIMITED Inventor DUFF, Gordon
The disclosure relates to compositions and methods for reducing the risk of developing severe illness or cytokine release syndrome associated with viral respiratory diseases such as COVID-19, by determining a subject's IL-1 genotype pattern and in some cases administering inflammation inhibitors. The IL-1 genotype is determined by obtaining information regarding the subject's single nucleotide polymorphism (SNP) alleles for: each of the rsl7561, rsl6944 and rsll43634 polymorphic loci, each of the rsl6944, rsll43623 and rs4848306 polymorphic loci; or each of the rsl7561, rsl6944, rsll43634, rsll43623 and rs4848306 polymorphic loci
3.WO/2021/207158REUSABLE INITIATORS FOR SYNTHESIZING NUCLEIC ACIDS
WO 14.10.2021
Int.Class C12N 15/10
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
15Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
09Recombinant DNA-technology
10Processes for the isolation, preparation or purification of DNA or RNA
Appl.No PCT/US2021/025918 Applicant MOLECULAR ASSEMBLIES, INC. Inventor AGARWALLA, Sanjay
The invention provides improved methods for synthesizing polynucleotides, such as DNA and RNA, using renewable initiators coupled to a solid support. Using the methods of the invention, specific sequences of polynucleotides can be synthesized de novo, base by base, in an aqueous environment, without the use of a nucleic acid template.
4.20210317540Microarray-Based Multiplex Fungal Pathogen Analysis
US 14.10.2021
Int.Class C12Q 1/6895
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
1Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
68involving nucleic acids
6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
6888for detection or identification of organisms
6895for plants, fungi or algae
Appl.No 17356139 Applicant Melissa May Inventor Melissa May

Provided herein is a method of quantitating a fungus in a plant, plant product or agricultural product. Total nucleic acids are isolated from a sample of the plant or plant product, and an asymmetric PCR amplification reaction is performed using fluorescent labeled primer pairs to obtain fluorescent labeled fungal amplicons. These amplicons are hybridized to fungus specific nucleic acid probes that are attached on a microarray support. The microarray is imaged to detect fluorescent signals from the fluorescent labeled fungal amplicons. The fluorescent signal intensity is correlated to the quantity of fungus.

5.20210317507METHOD FOR LIGATING NUCLEIC ACID FRAGMENTS, METHOD FOR CONSTRUCTING SEQUENCING LIBRARY, AND USE
US 14.10.2021
Int.Class C12Q 1/6806
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
1Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
68involving nucleic acids
6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction assay
Appl.No 17266542 Applicant GeneMind Biosciences Company Limited Inventor Guangli GAN

Disclosed are a method for ligating nucleic acid fragments, a method for constructing a sequencing library, and the use thereof. The method for ligating nucleic acid fragments comprises ligating a first nucleic acid fragment and a second nucleic acid fragment in a mixed enzyme reaction system comprising a DNA ligase and a RNA ligase, wherein the first nucleic acid fragment is double-stranded DNA. The ligation efficiency of the method for ligating nucleic acid fragments can reach 85% or more, and by using this ligation method to construct a sequencing library, the yield of the effective library is significantly improved.

6.WO/2021/205344QUANTIFYING ENDOTOXIN LOAD IN BACTERIAL BIOFILMS
WO 14.10.2021
Int.Class G01N 33/579
GPHYSICS
01MEASURING; TESTING
NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
33Investigating or analysing materials by specific methods not covered by groups G01N1/-G01N31/131
48Biological material, e.g. blood, urine; Haemocytometers
50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
579involving limulus lysate
Appl.No PCT/IB2021/052855 Applicant DEPUY SYNTHES PRODUCTS, INC. Inventor SHWARZ, Erica
Disclosed herein are methods for quantifying total endotoxin load in a biofilm sample. Also provided are methods for identifying a gram-negative biofilm derived bacterial infection. The disclosed methods more accurately define actual total endotoxin levels and can detect the presence of endotoxin in a given biofilm volume at a higher resolution than current extraction techniques.
7.WO/2021/207699INTEGRATED PHOTONIC SYSTEMS AND METHODS FOR BIOSENSING
WO 14.10.2021
Int.Class G01N 21/77
GPHYSICS
01MEASURING; TESTING
NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
21Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
77by observing the effect on a chemical indicator
Appl.No PCT/US2021/026716 Applicant SIPHOX, INC. Inventor VERMEULEN, Diedrik Rene
Disclosed herein are integrated photonics systems (3800) for biosensing including an interrogator photonic circuit (3802) and cartridge (3804) and methods using these systems. The cartridge (3804) comprises a sensor photonic integrated subcircuit. The cartridge (3804) is configured to receive a biological sample. The interrogator photonic circuit (3802) is optically coupled to the cartridge (3804) and comprises: (i) a light source (3806) configured to generate light; and (ii) one or more waveguides configured to carry the light, wherein the light is used to determine a characteristic of the biological sample in the cartridge (3804). A system can have an assembly of a plurality of modular photonic integrated subcircuits. Each subcircuit can be p re-fabricated and can be configured to transfer light to and receive light from another subcircuit based on the first functionality. An output port of a first subset of the subcircuits can be configured to be aligned with an input port of a second subset of the subcircuits. At least one subcircuit can be configured to be removed from the first integrated photonics assembly and connected to a second integrated photonics assembly having a second functionality. The first integrated photonics assembly can be different from the second integrated photonics assembly and the first functionality can be different from the second functionality.
8.20210317512METHOD, DEVICE, AND PROGRAM FOR DETECTING DEGREE OF HYBRIDIZATION OF NUCLEIC ACID
US 14.10.2021
Int.Class C12Q 1/6825
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
1Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
68involving nucleic acids
6813Hybridisation assays
6816characterised by the detection means
6825Nucleic acid detection involving sensors
Appl.No 17267746 Applicant YOKOWO CO., LTD. Inventor Shintaro TAKASE

A method for detecting a degree of nucleic acid hybridization using a first oxidation wave and a second oxidation wave, wherein: the method includes calculating the potential difference between a first potential at which, in the first oxidation wave, a first current value is obtained in a range below the potential for the peak current value of the first oxidation wave, and a second potential at which, in the second oxidation wave, the first current value is obtained in a range below the potential for the peak current value of the second oxidation wave.

9.20210317442ASSAY METHODS AND COMPOSITIONS FOR DETECTING CONTAMINATION OF NUCLEIC ACID IDENTIFIERS
US 14.10.2021
Int.Class C12N 15/10
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
15Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
09Recombinant DNA-technology
10Processes for the isolation, preparation or purification of DNA or RNA
Appl.No 17337186 Applicant Agilent Technologies, Inc. Inventor Katie Leigh Zobeck

The present invention relates to nucleic acid samples for massively parallel sequencing. More particularly, the present invention relates to assay methods, compositions and kits for detecting contamination of nucleic acid identifiers such as sample barcodes.

10.20210315970Hepatitis A Virus Replication Inhibitor Targeting mTOR
US 14.10.2021
Int.Class A61K 38/17
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
38Medicinal preparations containing peptides
16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
17from animals; from humans
Appl.No 17227859 Applicant Tokyo Metropolitan Institute of Medical Science Inventor Daisuke Yamane

[Problem to be solved] To provide a pharmaceutical composition for treating a disease caused by an RNA virus.

[Solution] A pharmaceutical composition for a disease caused by an RNA virus or an inhibitor of RNA virus replication, comprising retinoic acid receptor responder protein 3 and/or an mTOR inhibitor.