Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
2. (EP3403411) YIELD OPTIMIZATION OF CROSS-SCREEN ADVERTISING PLACEMENT

Application Number: 17739108 Application Date: 13.01.2017
Publication Number: 3403411 Publication Date: 21.11.2018
Publication Kind : A1
Prior PCT appl.: Application Number:US2017013569 ; Publication Number: Click to see the data
IPC:
H04N 21/2668
G06Q 30/02
H04N 21/2543
H04N 21/258
H04N 21/458
H ELECTRICITY
04
ELECTRIC COMMUNICATION TECHNIQUE
N
PICTORIAL COMMUNICATION, e.g. TELEVISION
21
Selective content distribution, e.g. interactive television, VOD [Video On Demand]
20
Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
25
Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication or learning user preferences for recommending movies
266
Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system or merging a VOD unicast channel into a multicast channel
2668
Creating a channel for a dedicated end-user group, e.g. by inserting targeted commercials into a video stream based on end-user profiles
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
Q
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
30
Commerce, e.g. shopping or e-commerce
02
Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
H ELECTRICITY
04
ELECTRIC COMMUNICATION TECHNIQUE
N
PICTORIAL COMMUNICATION, e.g. TELEVISION
21
Selective content distribution, e.g. interactive television, VOD [Video On Demand]
20
Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
25
Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication or learning user preferences for recommending movies
254
Management at additional data server, e.g. shopping server or rights management server
2543
Billing
H ELECTRICITY
04
ELECTRIC COMMUNICATION TECHNIQUE
N
PICTORIAL COMMUNICATION, e.g. TELEVISION
21
Selective content distribution, e.g. interactive television, VOD [Video On Demand]
20
Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
25
Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication or learning user preferences for recommending movies
258
Client or end-user data management, e.g. managing client capabilities, user preferences or demographics or processing of multiple end-users preferences to derive collaborative data
H ELECTRICITY
04
ELECTRIC COMMUNICATION TECHNIQUE
N
PICTORIAL COMMUNICATION, e.g. TELEVISION
21
Selective content distribution, e.g. interactive television, VOD [Video On Demand]
40
Client devices specifically adapted for the reception of, or interaction with, content, e.g. STB [set-top-box]; Operations thereof
45
Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies or resolving scheduling conflicts
458
Scheduling content for creating a personalised stream, e.g. by combining a locally stored advertisement with an incoming stream; Updating operations, e.g. for OS modules
Applicants: VIDEOAMP INC
Inventors: RAY DEBAJYOTI
MCCRAY ROSS
GULLO DAVID
PRASAD JAY
Priority Data: 201615219262 25.07.2016 US
201662278888 14.01.2016 US
201662290387 02.02.2016 US
2017013569 13.01.2017 US
Title: (FR) RENDEMENT OPTIMISÉ DU PLACEMENT DE PUBLICITÉS INTER ÉCRANS
(EN) YIELD OPTIMIZATION OF CROSS-SCREEN ADVERTISING PLACEMENT
(DE) ERTRAGSOPTIMIERUNG VON BILDSCHIRMÜBERGREIFENDER ANZEIGENPLATZIERUNG
Abstract:
(FR) La présente invention concerne un procédé généré par ordinateur permettant d'optimiser le placement d'un contenu publicitaire sur une pluralité de dispositifs différents. Le système permet de transmettre un contenu publicitaire ciblé à des consommateurs, sur des dispositifs TV et mobiles pouvant être utilisés depuis l'intérieur d'un environnement de distributeurs de programmes vidéo multivoie. Le système est apte à utiliser des contraintes matérielles et logicielles afin de déterminer un nombre de cibles possibles pour une campagne publicitaire et fournir ensuite des outils d'optimisation de ces cibles. Le système peut attribuer des campagnes et des plans publicitaires à divers types d'inventaire sur la base de la probabilité d'une mise en correspondance précise avec des consommateurs. La mise en correspondance avec les consommateurs peut être obtenue par la génération de modèles d'apparence similaire dans un graphique du dispositif des consommateurs pour prédire un comportement de consommation futur. Le système comprend une interface permettant à un utilisateur d'ajuster diverses contraintes et d'optimiser un rendement de revenus publicitaires pour des distributeurs.
(EN) The current invention relates to a computer-generated method for optimizing placement of advertising content across multiple different devices. The system permits targeting of advertising content to consumers on TV and mobile devices that can be operated from within a multi-channel video programming distributors environment. The system is able to use hard and soft constraints to come up with a number of possible targets for an advertising campaign and can then provide tools for optimizing those targets. The system can allocate advertising campaigns and plans to various inventory types based on the probability of accurate consumer matching. Consumer matching can be achieved by generation of look-alike models in a consumers device graph to predict future consumption behavior. The system includes an interface through which a user can adjust various constraints and optimize a distributors revenue yield from advertising.