Search International and National Patent Collections
Some content of this application is unavailable at the moment.
If this situation persists, please contact us atFeedback&Contact
1. (US20160223218) Automated control and parallel learning HVAC apparatuses, methods and systems

Office : United States of America
Application Number: 15011170 Application Date: 29.01.2016
Publication Number: 20160223218 Publication Date: 04.08.2016
Grant Number: 10465931 Grant Date: 05.11.2019
Publication Kind : B2
IPC:
F24F 11/30
F24F 11/62
F24F 140/60
F24F 120/20
F24F 11/65
F24F 11/54
F24F 11/58
F24F 11/46
[IPC code unknown for F24F 11/30][IPC code unknown for F24F 11/62][IPC code unknown for F24F 140/60][IPC code unknown for F24F 120/20][IPC code unknown for F24F 11/65][IPC code unknown for F24F 11/54][IPC code unknown for F24F 11/58][IPC code unknown for F24F 11/46]
CPC:
F24F 11/62
F24F 11/30
F24F 11/46
F24F 11/54
F24F 11/58
F24F 11/65
F24F 2120/20
F24F 2140/60
Applicants: Schneider Electric IT Corporation
Inventors: Enda Barrett
Agents: Locke Lord LLP
Priority Data:
Title: (EN) Automated control and parallel learning HVAC apparatuses, methods and systems
Abstract: front page image
(EN)

The AUTOMATED CONTROL AND PARALLEL LEARNING HVAC APPARATUSES, METHODS AND SYSTEMS (“ACPLHVAC”) updates real time value function estimates through parallel and reinforcement learning, via ACPLHVAC components, by observing a defined state action space to maximize user Quality of Experience (QoE) and minimize associated energy required with regulating environmental spaces.