Processing

Please wait...

Settings

Settings

Goto Application

1. WO2022163956 - ARTIFICIAL INTELLIGENCE-BASED METHOD AND SYSTEM FOR PREDICTING DEMAND AT STORE

Publication Number WO/2022/163956
Publication Date 04.08.2022
International Application No. PCT/KR2021/009022
International Filing Date 14.07.2021
IPC
G06Q 30/02 2012.1
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
30Commerce, e.g. shopping or e-commerce
02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
G06N 3/04 2006.1
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computer systems based on biological models
02using neural network models
04Architecture, e.g. interconnection topology
G06N 3/08 2006.1
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computer systems based on biological models
02using neural network models
08Learning methods
CPC
G06N 3/04
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computer systems based on biological models
02using neural network models
04Architectures, e.g. interconnection topology
G06N 3/045
G06N 3/08
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computer systems based on biological models
02using neural network models
08Learning methods
G06Q 10/02
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
10Administration; Management
02Reservations, e.g. for tickets, services or events
G06Q 30/02
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
30Commerce, e.g. shopping or e-commerce
02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
G06Q 30/0202
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
30Commerce, e.g. shopping or e-commerce
02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
0202Market predictions or demand forecasting
Applicants
  • 테이블매니저 주식회사 TABLEMANAGER INC. [KR]/[KR]
Inventors
  • 최훈민 CHOI, Hoon Min
Agents
  • 백승엽 BAIK, Seungyeob
Priority Data
10-2021-001393601.02.2021KR
Publication Language Korean (ko)
Filing Language Korean (KO)
Designated States
Title
(EN) ARTIFICIAL INTELLIGENCE-BASED METHOD AND SYSTEM FOR PREDICTING DEMAND AT STORE
(FR) PROCÉDÉ ET SYSTÈME À BASE D'INTELLIGENCE ARTIFICIELLE POUR PRÉDIRE LA DEMANDE AU NIVEAU D'UN MAGASIN
(KO) 인공지능 기반 매장 수요 예측 방법 및 시스템
Abstract
(EN) An operation method of a system for predicting demand at a store may comprise the steps of: obtaining, from a database, existing sales data of a store including reservation history information and visit history information of customers of the store by date; preprocessing the existing sales data of the store; generating multiple store demand prediction models by using multiple preconfigured algorithms obtained by learning the preprocessed existing sales data of the store; determining a store demand prediction model on the basis of an evaluation result of each of the multiple store demand prediction models; and predicting demand at the store by using the determined store demand prediction model.
(FR) Un procédé de fonctionnement d'un système de prédiction de la demande au niveau d'un magasin peut comprendre les étapes consistant à : obtenir, à partir d'une base de données, des données de ventes existantes d'un magasin comprenant des informations d'historique de réservation et des informations d'historique de visite de clients du magasin par date ; prétraiter les données de ventes existantes du magasin ; générer de multiples modèles de prédiction de demande de magasin en utilisant de multiples algorithmes préconfigurés obtenus par apprentissage des données de ventes existantes prétraitées du magasin ; déterminer un modèle de prédiction de demande de magasin sur la base d'un résultat d'évaluation de chacun des multiples modèles de prédiction de demande de magasin ; et prédire la demande au niveau du magasin à l'aide du modèle de prédiction de demande de magasin déterminé.
(KO) 매장의 수요 예측 시스템의 동작 방법은, 데이터베이스로부터 상기 매장의 일자별 고객들의 예약 내역 정보 및 방문 내역 정보를 포함하는 매장의 기존 매출 데이터를 획득하는 단계; 상기 매장의 기존 매출 데이터를 전처리(preprocessing)하는 단계; 상기 전처리된 매장의 기존 매출 데이터를 학습한 미리 설정된 복수의 알고리즘들을 이용하여 복수의 매장 수요 예측 모델들을 생성하는 단계; 복수의 매장 수요 예측 모델들 각각의 평가 결과를 기초로 매장 수요 예측 모델을 결정하는 단계; 및 결정된 상기 매장 수요 예측 모델을 이용하여, 상기 매장의 수요를 예측하는 단계를 포함할 수 있다.
Related patent documents
Latest bibliographic data on file with the International Bureau