(EN) A high-strength, high-plasticity light alloy material, a preparation method therefor, and an application thereof. A light alloy material that can be strengthened by heat treatment is sequentially subjected to solid solution treatment, cold treatment, high-temperature deformation, cold treatment, and aging treatment to obtain a high-strength, high-plasticity light alloy material. Performing cold treatment before high-temperature deformation can promote the formation of a small amount of uniformly distributed second phases. Such minute second phases can pin a grain boundary, impeding the abnormal growth of recrystallized crystal grains during high-temperature deformation, thereby forming uniformly distributed micron-scale crystal grain structures. Accordingly, the rate of uniform elongation of the material is increased, thereby increasing the plasticity of the material.
(FR) Un matériau d'alliage léger à haute résistance et à plasticité élevée, son procédé de préparation, et son application. Un matériau d'alliage léger qui peut être renforcé par traitement thermique est soumis séquentiellement à un traitement de mise en solution solide, à un traitement à froid, à une déformation à haute température, à un traitement à froid et à un traitement de vieillissement pour obtenir un matériau d'alliage léger à haute résistance et à plasticité élevée. La réalisation d'un traitement à froid avant une déformation à haute température peut favoriser la formation d'une petite quantité de secondes phases uniformément réparties. D’infimes secondes phases de ce type peuvent conférer une limite de grain, empêcher la croissance anormale de grains cristallins recristallisés pendant une déformation à haute température, ce qui permet de former des structures de grains cristallins à l'échelle micrométrique uniformément réparties. Par conséquent, le taux d'allongement uniforme du matériau est augmenté, ce qui permet d'augmenter la plasticité du matériau.
(ZH) 一种高强度高塑性轻合金材料及其制备方法与应用,将可热处理强化轻合金材料依次通过固溶处理、冷处理、高温变形、冷处理、时效处理来得到高强高塑轻合金材料。在高温变形前冷处理,可以促进少量均匀分布第二相的形成,这些细小的第二相可以钉扎晶界,阻碍高温变形过程中再结晶晶粒的异常长大,形成均匀分布微米尺度的晶粒组织,这将提高材料的均匀延伸率,进而提高材料的塑性。