Processing

Please wait...

Settings

Settings

Goto Application

1. WO2022114570 - METHOD FOR OPTIMIZING TOOL PATH TO MINIMIZE HEAT CONCENTRATION PHENOMENON IN METAL 3D PRINTING

Publication Number WO/2022/114570
Publication Date 02.06.2022
International Application No. PCT/KR2021/015754
International Filing Date 03.11.2021
IPC
B22F 10/366 2021.1
BPERFORMING OPERATIONS; TRANSPORTING
22CASTING; POWDER METALLURGY
FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
10Additive manufacturing of workpieces or articles from metallic powder
30Process control
36of energy beam parameters
366Scanning parameters, e.g. hatch distance or scanning strategy
B22F 10/368 2021.1
BPERFORMING OPERATIONS; TRANSPORTING
22CASTING; POWDER METALLURGY
FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
10Additive manufacturing of workpieces or articles from metallic powder
30Process control
36of energy beam parameters
368Temperature or temperature gradient, e.g. temperature of the melt pool
B22F 10/85 2021.1
BPERFORMING OPERATIONS; TRANSPORTING
22CASTING; POWDER METALLURGY
FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
10Additive manufacturing of workpieces or articles from metallic powder
80Data acquisition or data processing
85for controlling or regulating additive manufacturing processes
B22F 10/28 2021.1
BPERFORMING OPERATIONS; TRANSPORTING
22CASTING; POWDER METALLURGY
FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
10Additive manufacturing of workpieces or articles from metallic powder
20Direct sintering or melting
28Powder bed fusion, e.g. selective laser melting or electron beam melting
B33Y 10/00 2015.1
BPERFORMING OPERATIONS; TRANSPORTING
33ADDITIVE MANUFACTURING TECHNOLOGY
YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
10Processes of additive manufacturing
B33Y 50/02 2015.1
BPERFORMING OPERATIONS; TRANSPORTING
33ADDITIVE MANUFACTURING TECHNOLOGY
YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
50Data acquisition or data processing for additive manufacturing
02for controlling or regulating additive manufacturing processes
CPC
B22F 10/28
BPERFORMING OPERATIONS; TRANSPORTING
22CASTING; POWDER METALLURGY
FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
10Additive manufacturing of workpieces or articles from metallic powder
20Direct sintering or melting
28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
B22F 10/366
BPERFORMING OPERATIONS; TRANSPORTING
22CASTING; POWDER METALLURGY
FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
10Additive manufacturing of workpieces or articles from metallic powder
30Process control
36of energy beam parameters
366Scanning parameters, e.g. hatch distance or scanning strategy
B22F 10/368
BPERFORMING OPERATIONS; TRANSPORTING
22CASTING; POWDER METALLURGY
FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
10Additive manufacturing of workpieces or articles from metallic powder
30Process control
36of energy beam parameters
368Temperature or temperature gradient, e.g. temperature of the melt pool
B22F 10/85
BPERFORMING OPERATIONS; TRANSPORTING
22CASTING; POWDER METALLURGY
FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
10Additive manufacturing of workpieces or articles from metallic powder
80Data acquisition or data processing
85for controlling or regulating additive manufacturing processes
B33Y 10/00
BPERFORMING OPERATIONS; TRANSPORTING
33ADDITIVE MANUFACTURING TECHNOLOGY
YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
10Processes of additive manufacturing
B33Y 50/02
BPERFORMING OPERATIONS; TRANSPORTING
33ADDITIVE MANUFACTURING TECHNOLOGY
YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
50Data acquisition or data processing for additive manufacturing
02for controlling or regulating additive manufacturing processes
Applicants
  • 한국전자기술연구원 KOREA ELECTRONICS TECHNOLOGY INSTITUTE [KR]/[KR]
Inventors
  • 신화선 SHIN, Hwa Seon
  • 전성환 CHUN, Sung Hwan
  • 이혜인 LEE, Hye In
  • 박성훈 PARK, Sung Hun
Agents
  • 남충우 NAM, Choong Woo
Priority Data
10-2020-015948825.11.2020KR
Publication Language Korean (ko)
Filing Language Korean (KO)
Designated States
Title
(EN) METHOD FOR OPTIMIZING TOOL PATH TO MINIMIZE HEAT CONCENTRATION PHENOMENON IN METAL 3D PRINTING
(FR) PROCÉDÉ D'OPTIMISATION DE TRAJET D'OUTIL POUR RÉDUIRE AU MINIMUM LE PHÉNOMÈNE DE CONCENTRATION DE CHALEUR DANS UNE IMPRESSION 3D MÉTALLIQUE
(KO) 금속 3D 프린팅 열쏠림 현상 최소화를 위한 공구 경로 최적화 방법
Abstract
(EN) Provided is a method for optimizing a tool path to minimize a heat concentration phenomenon in metal 3D printing. The method for optimizing a tool path, according to an embodiment of the present invention, comprises: a slicing step of generating single layer data by slicing a 3D model; a tool path data generation step of generating tool path data including a movement path of a tool moving inside a single layer by applying equipment settings to the generated single layer data; a thermal data generation step of generating, on the basis of the tool path data, thermal data (A) of a first single layer and thermal data (B1, B2, B3) of three sub-layers of the first single layer; a thermal data analysis step of generating a thermal data contour line by merging the thermal data (A, B1, B2, B3); a thermal data application step of setting a division region (D) by dividing, on the basis of the thermal data contour line, a region in which a heat concentration phenomenon occurs; and a tool path optimization step of optimizing a tool path for the division region (D). Therefore, by modifying a tool path on the basis of thermal data in which a heat concentration phenomenon occurring during metal additive manufacturing is simulated, a tool path in which the heat concentration phenomenon is minimized is modified and regenerated, and thus, costs incurred in a current metal 3D printing manufacturing site can be reduced.
(FR) L'invention concerne un procédé d'optimisation d'un trajet d'outil pour réduire au minimum un phénomène de concentration de chaleur dans une impression 3D métallique. Le procédé d'optimisation d'un trajet d'outil, selon un mode de réalisation de la présente invention, comprend : une étape de tranchage consistant à générer des données de couche unique par tranchage d'un modèle 3D ; une étape de génération de données de trajet d'outil consistant à générer des données de trajet d'outil incluant un trajet de déplacement d'un outil se déplaçant à l'intérieur d'une couche unique par application de réglages d'équipement aux données de couche unique générées ; une étape de génération de données thermiques consistant à générer, sur la base des données de trajet d'outil, des données thermiques (A) d'une première couche unique et des données thermiques (B1, B2, B3) de trois sous-couches de la première couche unique ; une étape d'analyse de données thermiques consistant à générer une ligne de contour de données thermiques par fusion des données thermiques (A, B1, B2, B3) ; une étape d'application de données thermiques consistant à définir une région de division (D) en divisant, sur la base de la ligne de contour de données thermiques, une région dans laquelle se produit un phénomène de concentration de chaleur ; et une étape d'optimisation de trajet d'outil consistant à optimiser un trajet d'outil pour la région de division (D). Par conséquent, en modifiant un trajet d'outil sur la base de données thermiques dans lesquelles un phénomène de concentration de chaleur se produisant pendant la fabrication additive métallique est simulé, un trajet d'outil dans lequel le phénomène de concentration de chaleur est réduit au minimum est modifié et régénéré et, ainsi, les coûts encourus dans un site de fabrication d'impression 3D métallique actuel peuvent être réduits.
(KO) 금속 3D 프린팅 열쏠림 현상 최소화를 위한 공구 경로를 최적화하는 방법이 제공된다. 본 발명의 실시예에 따른 공구 경로 최적화 방법은, 3D 모델을 슬라이싱하여 단층 데이터를 생성하는 슬라이싱 단계; 생성된 단층 데이터에 장비 설정을 적용하여, 단층 내부를 이동하는 공구의 이동 경로를 포함하는 공구 경로 데이터를 생성하는 공구 경로 데이터 생성 단계; 공구 경로 데이터를 기반으로 제1 단층의 열 데이터(A)와 제1 단층의 하위 3개 층의 열 데이터(B1, B2, B3)를 생성하는 열 데이터 생성 단계; 열 데이터 A, B1, B2, B3를 병합하여, 열 데이터 등고선을 생성하는 열 데이터 분석 단계; 열 데이터 등고선을 기반으로 열 쏠림 현상이 집중된 영역을 구분하여, 구분 영역(D)을 설정하는 열 데이터 적용 단계; 및 구분 영역(D)에 대한 공구 경로를 최적화하는 공구 경로 최적화 단계;를 포함한다. 이에 의해, 금속 적층 제조 시 발생하는 열 쏠림 현상을 시뮬레이션된 열 데이터를 근거로 공구 경로를 수정하여 열 쏠림 현상이 최소화된 공구 경로를 수정 및 재생성함으로써, 현재 금속 3D 프린팅 제조 현장에서 발생하는 비용을 절감할 수 있다.
Related patent documents
Latest bibliographic data on file with the International Bureau