Processing

Please wait...

Settings

Settings

Goto Application

1. WO2022110444 - DYNAMIC PREDICTION METHOD AND APPARATUS FOR CLOUD NATIVE RESOURCES, COMPUTER DEVICE AND STORAGE MEDIUM

Publication Number WO/2022/110444
Publication Date 02.06.2022
International Application No. PCT/CN2020/139679
International Filing Date 25.12.2020
IPC
H04L 29/08 2006.1
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
29Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/-H04L27/136
02Communication control; Communication processing
06characterised by a protocol
08Transmission control procedure, e.g. data link level control procedure
H04L 12/24 2006.1
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
12Data switching networks
02Details
24Arrangements for maintenance or administration
CPC
G06F 2009/45595
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
FELECTRIC DIGITAL DATA PROCESSING
9Arrangements for program control, e.g. control units
06using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
44Arrangements for executing specific programs
455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
45533Hypervisors; Virtual machine monitors
45558Hypervisor-specific management and integration aspects
45595Network integration; Enabling network access in virtual machine instances
G06F 9/45558
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
FELECTRIC DIGITAL DATA PROCESSING
9Arrangements for program control, e.g. control units
06using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
44Arrangements for executing specific programs
455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
45533Hypervisors; Virtual machine monitors
45558Hypervisor-specific management and integration aspects
G06N 3/082
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computer systems based on biological models
02using neural network models
08Learning methods
082modifying the architecture, e.g. adding or deleting nodes or connections, pruning
H04L 41/145
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
41Arrangements for maintenance or administration or management of packet switching networks
14involving network analysis or design, e.g. simulation, network model or planning
145involving simulating, designing, planning or modelling of a network
H04L 41/147
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
41Arrangements for maintenance or administration or management of packet switching networks
14involving network analysis or design, e.g. simulation, network model or planning
147for prediction of network behaviour
H04L 67/10
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
67Network-specific arrangements or communication protocols supporting networked applications
10in which an application is distributed across nodes in the network
Applicants
  • 中国科学院深圳先进技术研究院 SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES [CN]/[CN]
Inventors
  • 叶可江 YE, Kejiang
  • 陈文艳 CHEN, Wenyan
  • 须成忠 XU, Chengzhong
Agents
  • 北京中巡通大知识产权代理有限公司 BEIJING ZHONG XUN TONG DA INTELLECTUAL PROPERTY AGENCY CO., LTD.
Priority Data
202011373082.630.11.2020CN
Publication Language Chinese (zh)
Filing Language Chinese (ZH)
Designated States
Title
(EN) DYNAMIC PREDICTION METHOD AND APPARATUS FOR CLOUD NATIVE RESOURCES, COMPUTER DEVICE AND STORAGE MEDIUM
(FR) PROCÉDÉ ET APPAREIL DE PRÉDICTION DYNAMIQUE POUR RESSOURCES NATIVES EN NUAGE, DISPOSITIF INFORMATIQUE ET SUPPORT DE STOCKAGE
(ZH) 云原生资源动态预测方法、装置、计算机设备及存储介质
Abstract
(EN) A dynamic prediction method for cloud native resources, comprising: on the basis of a Pearson correlation coefficient, performing correlation sorting on obtained resource data to be predicted and performance index data to obtain a correlation relation between the resource data to be predicted and the performance index data (S3); defining a correlation threshold on the basis of the correlation relation (S4); using the performance index data greater than or equal to the correlation threshold as performance index time series data (S5); horizontally expanding the performance index time series data to obtain training data and test data (S6); inputting the training data into a constructed sequential neural network model to carry out training (S7), to obtain a trained sequential neural network prediction model; and inputting the test data into the sequential neural network prediction model to carry out prediction operation, to obtain resource prediction results (S8). Further provided are a dynamic prediction apparatus for cloud native resources, a computer device and a storage medium, capable of reducing prediction complexity and improving prediction accuracy.
(FR) L'invention concerne un procédé de prédiction dynamique pour des ressources natives en nuage, comprenant les étapes consistant à : sur la base d'un coefficient de corrélation de Pearson, réaliser un tri de corrélation sur les données de ressources à prédire et des données d'indice de performance obtenues pour obtenir une relation de corrélation entre les données de ressources à prédire et les données d'indice de performance (S3) ; définir un seuil de corrélation sur la base de la relation de corrélation (S4) ; utiliser les données d'indice de performance supérieures ou égales au seuil de corrélation comme données chronologiques d'indice de performance (S5) ; étendre horizontalement les données chronologiques d'indice de performance pour obtenir des données d'entraînement et des données de test (S6) ; introduire les données d'entraînement dans un modèle à réseau de neurones séquentiel construit pour effectuer un entraînement (S7), afin d'obtenir un modèle de prédiction à réseau de neurones séquentiel entraîné ; et introduire les données de test dans le modèle de prédiction à réseau de neurones séquentiel pour effectuer une opération de prédiction, afin d'obtenir des résultats de prédiction de ressource (S8). L'invention concerne en outre un appareil de prédiction dynamique pour des ressources natives en nuage, un dispositif informatique et un support de stockage, permettant de réduire la complexité de prédiction et d'améliorer la précision de prédiction.
(ZH) 一种云原生资源动态预测方法,包括基于皮尔森相关系数对获取到的待预测资源数据以及性能指标数据进行相关度排序,得到待预测资源数据以及性能指标数据之间的相关性关系(S3);基于相关性关系定义相关度阈值(S4);将大于或等于相关度阈值的性能指标数据作为性能指标时序数据(S5);将性能指标时序数据进行横向数据扩展,得到训练数据以及测试数据(S6);将训练数据输入至构建好的时序神经网络模型中进行训练(S7),得到训练好的时序神经网络预测模型;将测试数据输入时序神经网络预测模型中进行预测操作,得到资源预测结果(S8),还提供一种云原生资源动态预测装置、计算机设备及存储介质,能够降低预测复杂度,提高预测准确性。
Related patent documents
Latest bibliographic data on file with the International Bureau