Processing

Please wait...

Settings

Settings

Goto Application

1. WO2022008037 - ML UE CAPABILITY AND INABILITY

Publication Number WO/2022/008037
Publication Date 13.01.2022
International Application No. PCT/EP2020/069071
International Filing Date 07.07.2020
IPC
G06F 1/3209 2019.1
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
1Details not covered by groups G06F3/-G06F13/82
26Power supply means, e.g. regulation thereof
32Means for saving power
3203Power management, i.e. event-based initiation of a power-saving mode
3206Monitoring of events, devices or parameters that trigger a change in power modality
3209Monitoring remote activity, e.g. over telephone lines or network connections
G06F 1/3212 2019.1
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
1Details not covered by groups G06F3/-G06F13/82
26Power supply means, e.g. regulation thereof
32Means for saving power
3203Power management, i.e. event-based initiation of a power-saving mode
3206Monitoring of events, devices or parameters that trigger a change in power modality
3212Monitoring battery levels, e.g. power saving mode being initiated when battery voltage goes below a certain level
G06F 1/3228 2019.1
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
1Details not covered by groups G06F3/-G06F13/82
26Power supply means, e.g. regulation thereof
32Means for saving power
3203Power management, i.e. event-based initiation of a power-saving mode
3206Monitoring of events, devices or parameters that trigger a change in power modality
3228Monitoring task completion, e.g. by use of idle timers, stop commands or wait commands
G06F 1/329 2019.1
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
1Details not covered by groups G06F3/-G06F13/82
26Power supply means, e.g. regulation thereof
32Means for saving power
3203Power management, i.e. event-based initiation of a power-saving mode
3234Power saving characterised by the action undertaken
329by task scheduling
G06N 20/00 2019.1
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
20Machine learning
H04L 29/08 2006.1
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
29Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/-H04L27/136
02Communication control; Communication processing
06characterised by a protocol
08Transmission control procedure, e.g. data link level control procedure
Applicants
  • NOKIA TECHNOLOGIES OY [FI]/[FI]
Inventors
  • PANTELIDOU, Anna
  • SARTORI, Cinzia
  • TOMALA, Malgorzata
  • HELMERS, Hakon
Agents
  • NOKIA EPO REPRESENTATIVES
Priority Data
Publication Language English (en)
Filing Language English (EN)
Designated States
Title
(EN) ML UE CAPABILITY AND INABILITY
(FR) APTITUDE ET INCAPACITÉ D’UE ML
Abstract
(EN) It is provided a method comprising: checking whether a terminal indicates to a network its capability to execute and/or to train a machine learning model; monitoring whether the terminal is in an inability state; informing the network that the terminal is in the inability state if the terminal indicated the capability and the terminal is in the inability state, wherein, in the inability state, the terminal is not able to execute and/or train the machine learning model, or the terminal is not able to execute and/or train the machine learning model at least with a predefined performance.
(FR) L'invention concerne un procédé comportant les étapes consistant à: vérifier si un terminal indique à un réseau son aptitude à exécuter et/ou à entraîner un modèle d’apprentissage automatique; surveiller si le terminal est dans un état d’incapacité; informer le réseau que le terminal est dans l’état d’incapacité si le terminal a indiqué l’aptitude et si le terminal est dans l’état d’incapacité, le terminal, dans l’état d’incapacité, n’étant pas capable d’exécuter et/ou d’entraîner le modèle d’apprentissage automatique, ou n’étant pas capable d’exécuter et/ou d’entraîner le modèle d’apprentissage automatique au moins avec des performances prédéfinies.
Latest bibliographic data on file with the International Bureau