Processing

Please wait...

Settings

Settings

Goto Application

1. WO2021121241 - METHOD FOR PREPARING LITHIUM IRON MANGANESE PHOSPHATE PRECURSOR AND METHOD FOR PREPARING LITHIUM IRON MANGANESE PHOSPHATE

Publication Number WO/2021/121241
Publication Date 24.06.2021
International Application No. PCT/CN2020/136685
International Filing Date 16.12.2020
IPC
C01B 25/45 2006.1
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF
25Phosphorus; Compounds thereof
16Oxyacids of phosphorus; Salts thereof
26Phosphates
45containing plural metal, or metal and ammonium
H01M 4/136 2010.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
4Electrodes
02Electrodes composed of, or comprising, active material
13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
H01M 4/58 2010.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
4Electrodes
02Electrodes composed of, or comprising, active material
36Selection of substances as active materials, active masses, active liquids
58of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
H01M 10/052 2010.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
10Secondary cells; Manufacture thereof
05Accumulators with non-aqueous electrolyte
052Li-accumulators
B82Y 30/00 2011.1
BPERFORMING OPERATIONS; TRANSPORTING
82NANOTECHNOLOGY
YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE  OR TREATMENT OF NANOSTRUCTURES
30Nanotechnology for materials or surface science, e.g. nanocomposites
CPC
B82Y 30/00
BPERFORMING OPERATIONS; TRANSPORTING
82NANOTECHNOLOGY
YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
30Nanotechnology for materials or surface science, e.g. nanocomposites
B82Y 40/00
BPERFORMING OPERATIONS; TRANSPORTING
82NANOTECHNOLOGY
YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
40Manufacture or treatment of nanostructures
C01B 25/45
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
25Phosphorus; Compounds thereof
16Oxyacids of phosphorus; Salts thereof
26Phosphates
45containing plural metal, or metal and ammonium
C01P 2004/61
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
2004Particle morphology
60Particles characterised by their size
61Micrometer sized, i.e. from 1-100 micrometer
C01P 2004/62
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
2004Particle morphology
60Particles characterised by their size
62Submicrometer sized, i.e. from 0.1-1 micrometer
C01P 2004/64
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
2004Particle morphology
60Particles characterised by their size
64Nanometer sized, i.e. from 1-100 nanometer
Applicants
  • 江苏力泰锂能科技有限公司 JIANGSU LITHITECH CO., LTD. [CN]/[CN]
Inventors
  • 马寅 MA, Yin
  • 龚政 GONG, Zheng
  • 郭永楠 GUO, Yongnan
  • 李佳玮 LI, Jiawei
  • 吕佳乐 LV, Jiale
Agents
  • 中原信达知识产权代理有限责任公司 CHINA SINDA INTELLECTUAL PROPERTY LIMITED
Priority Data
201911308409.918.12.2019CN
Publication Language Chinese (zh)
Filing Language Chinese (ZH)
Designated States
Title
(EN) METHOD FOR PREPARING LITHIUM IRON MANGANESE PHOSPHATE PRECURSOR AND METHOD FOR PREPARING LITHIUM IRON MANGANESE PHOSPHATE
(FR) PROCÉDÉ DE PRÉPARATION D'UN PRÉCURSEUR DE PHOSPHATE DE LITHIUM-MANGANÈSE-FER ET PROCÉDÉ DE PRÉPARATION DE PHOSPHATE DE LITHIUM-MANGANÈSE-FER
(ZH) 制备磷酸锰铁锂前体的方法和制备磷酸锰铁锂的方法
Abstract
(EN) Disclosed are a method for preparing a lithium iron manganese phosphate precursor and a method for preparing lithium iron manganese phosphate. The method for preparing a lithium iron manganese phosphate precursor comprises the following steps: (1) preparing a liquid material A and a liquid material B, wherein the liquid material A is a mixed solution of a manganese salt and an iron salt, and the liquid material B is oxalic acid or a phosphoric acid solution; (2) subjecting the liquid material A and the liquid material B to a co-precipitation reaction within a supergravity rotating bed (100) to obtain a first slurry; (3) washing the first slurry and filtering same to obtain a filter cake; (4) mixing the filter cake and water, adding a carbon source, and stirring same until uniform to obtain a second slurry; (5) homogenizing the second slurry; and (6) drying the homogenized second slurry, to obtain the lithium iron manganese phosphate precursor. The particle size of the lithium iron manganese phosphate precursor prepared by means of the method is smaller and more uniform than that of a precursor prepared by means of a traditional method using a reaction kettle, the preparation speed is increased, and the carbon coating is more uniform.
(FR) L'invention concerne un procédé de préparation d'un précurseur de phosphate de lithium-fer-manganèse et un procédé de préparation de phosphate de lithium-fer-manganèse. Le procédé de préparation d’un précurseur de phosphate de lithium-fer-manganèse comprend les étapes suivantes, consistant : (1) à préparer une matière liquide A et une matière liquide B, la matière liquide A étant une solution mixte d'un sel de manganèse et d'un sel de fer, et la matière liquide B étant de l'acide oxalique ou une solution d'acide phosphorique ; (2) à soumettre la matière liquide A et la matière liquide B à une réaction de co-précipitation à l'intérieur d'un lit rotatif à supergravité (100) pour obtenir une première suspension épaisse ; (3) à laver la première suspension épaisse et à la filtrer pour obtenir un gâteau de filtration ; (4) à mélanger le gâteau de filtration et de l'eau, à ajouter une source de carbone et à agiter le tout jusqu'à l'obtention d'une seconde suspension épaisse ; (5) à homogénéiser la seconde suspension épaisse ; et (6) à sécher la seconde suspension épaisse homogénéisée, pour obtenir le précurseur de phosphate de lithium-manganèse-fer. La taille des particules du précurseur de phosphate de lithium-manganèse-fer préparé au moyen du procédé est plus petite et plus uniforme que celle d'un précurseur préparé au moyen d'un procédé traditionnel à l'aide d'une chaudière de réaction, la vitesse de préparation est augmentée et le revêtement de carbone est plus uniforme.
(ZH) 一种制备磷酸锰铁锂前体的方法和制备磷酸锰铁锂的方法。所述制备磷酸锰铁锂前体的方法包括以下步骤:(1)准备液料A和液料B,其中所述液料A为锰盐与铁盐的混合溶液,所述液料B为草酸或者磷酸溶液;(2)将液料A与液料B在超重力旋转床(100)内进行共沉淀反应,得到第一浆料;(3)将所述第一浆料进行洗涤过滤,得到滤饼;(4)将所述滤饼和水混合,并加入碳源,搅拌均匀,得到第二浆料;(5)将所述第二浆料进行均质;(6)将均质后的第二浆料进行干燥处理,获得磷酸锰铁锂前体。通过该方法制得的磷酸锰铁锂前体的粒径比使用反应釜的传统方法制得的前体更加细小且均匀,制备速度提升,碳包覆得更加均匀。
Related patent documents
Latest bibliographic data on file with the International Bureau