Processing

Please wait...

Settings

Settings

Goto Application

1. WO2021114196 - PREPARATION METHOD FOR LITHIUM SULFUR BATTERY BASED ON LARGE-AREA THICK FILM CONTROLLABLE TEXTURED PHOTONIC CRYSTAL

Publication Number WO/2021/114196
Publication Date 17.06.2021
International Application No. PCT/CN2019/124964
International Filing Date 13.12.2019
IPC
H01M 4/62 2006.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
4Electrodes
02Electrodes composed of, or comprising, active material
62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 2010.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
10Secondary cells; Manufacture thereof
05Accumulators with non-aqueous electrolyte
052Li-accumulators
0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
CPC
C30B 29/02
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL-GROWTH
29Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
02Elements
C30B 29/18
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL-GROWTH
29Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
10Inorganic compounds or compositions
16Oxides
18Quartz
H01M 10/052
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
10Secondary cells; Manufacture thereof
05Accumulators with non-aqueous electrolyte
052Li-accumulators
H01M 10/058
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
10Secondary cells; Manufacture thereof
05Accumulators with non-aqueous electrolyte
058Construction or manufacture
H01M 4/139
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
4Electrodes
02Electrodes composed of or comprising active material
13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
139Processes of manufacture
Y02E 60/10
YSECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
60Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
10Energy storage using batteries
Applicants
  • 上海交通大学 SHANGHAI JIAOTONG UNIVERSITY [CN]/[CN]
Inventors
  • 胡晓斌 HU, Xiaobin
  • 林升炫 LIN, Shengxuan
  • 蔡子贺 CAI, Zihe
  • 肖佳佳 XIAO, Jiajia
  • 陈宇航 CHEN, Yuhang
  • 王一帆 WANG, Yifan
Agents
  • 上海科盛知识产权代理有限公司 SHANGHAI KESHENG INTELLECTUAL PROPERTY AGENCY LTD.
Priority Data
201911250675.009.12.2019CN
Publication Language Chinese (zh)
Filing Language Chinese (ZH)
Designated States
Title
(EN) PREPARATION METHOD FOR LITHIUM SULFUR BATTERY BASED ON LARGE-AREA THICK FILM CONTROLLABLE TEXTURED PHOTONIC CRYSTAL
(FR) PROCÉDÉ DE PRÉPARATION POUR UNE BATTERIE AU LITHIUM-SOUFRE SUR LA BASE D'UN CRISTAL PHOTONIQUE TEXTURÉ POUVANT ÊTRE COMMANDÉ PAR UN FILM ÉPAIS DE GRANDE SURFACE
(ZH) 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法
Abstract
(EN) A preparation method for a lithium sulfur battery based on a large-area thick film controllable textured photonic crystal. With a vertical settlement self-assembly method, as a solvent volatilizes, monodisperse microspheres are arranged in macropores of a substrate to form a photonic crystal structure, the photonic crystal is used as a template, ordered microporous carbon is synthesized in gaps of the template, and the photonic crystal template is removed to obtain a three-dimensional ordered hierarchical porous carbon photonic crystal, thus a large-area thick film controllable textured photonic crystal is formed. The large-area thick film controllable textured photonic crystal is composited with element sulphur to obtain a sulphur positive electrode, and metal lithium serves as a counter electrode, thereby assembling a lithium sulphur battery. The changes of the thickness of the substrate and the concentration of a suspension liquid achieves a controllable thick film with an electrode thickness of from 10 μm to 650 μm, and the change of the area of the substrate achieves large-area preparation with an electrode area of 0.1-400 cm2. In addition, the adjustment of the concentration of an organic solution of sulfur achieves a high sulfur load of 1-15 mg/cm-2, thereby achieving a high surface capacity density and a high surface energy density of the lithium sulfur battery.
(FR) La présente invention concerne un procédé de préparation d'une batterie au lithium-soufre sur la base d'un cristal photonique texturé pouvant être commandé par un film épais de grande surface. Avec un procédé d'auto-assemblage par tassement vertical, au fur et à mesure qu'un solvant se volatilise, des microsphères monodispersées sont disposées dans des macropores d'un substrat pour former une structure de cristal photonique, le cristal photonique est utilisé comme gabarit, du carbone microporeux ordonné est synthétisé dans des espaces du gabarit et le gabarit de cristal photonique est retiré pour obtenir un cristal photonique de carbone poreux hiérarchique ordonné tridimensionnel, ce qui permet de former un cristal photonique texturé pouvant être commandé par un film épais de grande surface. Le cristal photonique texturé pouvant être commandé par un film épais de grande surface est composé avec du soufre élémentaire pour obtenir une électrode positive au soufre et le lithium métallique fait office de contre-électrode, ce qui permet d'assembler une batterie au lithium-soufre. Les changements de l'épaisseur du substrat et de la concentration d'un liquide de suspension permettent d'obtenir un film épais contrôlable présentant une épaisseur d'électrode allant de 10 µm à 650 µm et le changement de la surface du substrat atteint une préparation de grande surface avec une surface d'électrode allant de 0,1 à 400 cm2. De plus, le réglage de la concentration d'une solution organique de soufre atteint une charge de soufre élevée de 1 à 15 mg/cm-2 , ce qui permet d'obtenir une densité de capacité de surface élevée et une densité d'énergie de surface élevée de la batterie au lithium-soufre.
(ZH) 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法,利用垂直沉降自组装的方法,随着溶剂挥发,使单分散微球在基材的大孔中排列成光子晶体结构,以光子晶体为模板,在模板间隙中合成有序微孔碳,去除光子晶体模板获得三维有序分级多孔结构的碳光子晶体,从而形成大面积厚膜可控的织构光子晶体。将其与单质硫复合得到硫正极,锂金属作为对电极,从而组装成锂硫电池。通过改变基材的厚度和悬浊液的浓度,实现了电极厚度从10-650µm的厚膜可控,同时通过改变基材的面积,实现了电极面积从0.1-400cm 2的大面积制备。此外通过调节硫的有机溶液的浓度,实现了从1-15mg·cm -2的硫高负载,从而实现了锂硫电池的高面容量密度和面能量密度。
Related patent documents
Latest bibliographic data on file with the International Bureau