Processing

Please wait...

Settings

Settings

Goto Application

1. WO2021066925 - MICROWAVE MAGNETRON WITH CONSTANT ANODIC IMPEDANCE AND SYSTEMS USING THE SAME

Publication Number WO/2021/066925
Publication Date 08.04.2021
International Application No. PCT/US2020/042451
International Filing Date 17.07.2020
IPC
H01J 23/05 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
23Details of transit-time tubes of the types covered by group H01J25/88
02Electrodes; Magnetic control means; Screens
04Cathodes
05having a cylindrical emissive surface, e.g. cathodes for magnetrons
H01J 23/10 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
23Details of transit-time tubes of the types covered by group H01J25/88
02Electrodes; Magnetic control means; Screens
10Magnet systems for directing or deflecting the discharge along a desired path, e.g. a spiral path
H01J 23/20 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
23Details of transit-time tubes of the types covered by group H01J25/88
16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
18Resonators
20Cavity resonators; Adjustment or tuning thereof
C23C 14/35 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
14Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
22characterised by the process of coating
34Sputtering
35by application of a magnetic field, e.g. magnetron sputtering
CPC
C23C 16/274
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
26Deposition of carbon only
27Diamond only
274using microwave discharges
C23C 16/511
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
50using electric discharges
511using microwave discharges
H01J 2237/3321
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
2237Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
32Processing objects by plasma generation
33characterised by the type of processing
332Coating
3321CVD [Chemical Vapor Deposition]
H01J 23/38
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
23Details of transit-time tubes of the types covered by group H01J25/00
36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
38to or from the discharge
H01J 25/58
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
25Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
52with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
58having a number of resonators; having a composite resonator, e.g. a helix
H01J 37/32201
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
37Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
32Gas-filled discharge tubes, ; e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
32192Microwave generated discharge
32201Generating means
Applicants
  • MKS INSTRUMENTS, INC. [US]/[US]
Inventors
  • BRAGHIROLI, Francesco
  • BALOCCHI, Paolo
Agents
  • MILLS, Steven
  • PYSHER, Paul
  • CHACLAS, George N.
  • COHEN, Jerry
  • CLARKE, J.D., PH.D., Daniel W.
  • EMMONS, Richard B.
  • COWLES, Christopher R.
  • GOLDMAN, Gabriel
  • JOBSE, Bruce D.
  • MARAIA, Joseph M.
  • MCGRATH, Daniel
  • QUINN, Joseph P.
  • SCHEPPER, Marlo M.
  • SERIO, John C.
  • SORKIN, Paul D.
  • SUSAN, Janine M.
  • FOLEY, Shawn
  • SCHULTZ, Christopher S.
  • KARIMI, Pegah
Priority Data
16/593,94204.10.2019US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) MICROWAVE MAGNETRON WITH CONSTANT ANODIC IMPEDANCE AND SYSTEMS USING THE SAME
(FR) MAGNÉTRON À MICRO-ONDES À IMPÉDANCE ANODIQUE CONSTANTE ET SYSTÈMES L'UTILISANT
Abstract
(EN)
A microwave magnetron includes a cathode for emitting electrons, a filament for receiving a filament current to heat the cathode to enable to cathode to emit the electrons, and an anode to which anodic power can be applied to affect a flow of the electrons. An anodic power input receives the anodic power to be applied to the anode, the anodic power being characterized by an anodic current, an anodic voltage, and an anodic impedance, the anodic impedance being a quotient of the anodic voltage and the anodic current. An electromagnet power input receives electromagnet power and applies the electromagnet power to an electromagnet to control an intensity of a magnetic field, the electromagnet power being characterized by an electromagnet current. A controller adjusts at least one of the parameters of the magnetron to affect the flow of electrons while maintaining the anodic impedance constant.
(FR)
L'invention concerne un magnétron à micro-ondes comprenant une cathode pour émettre des électrons, un filament pour recevoir un courant de filament pour chauffer la cathode pour permettre à la cathode d'émettre les électrons, et une anode à laquelle une puissance anodique peut être appliquée pour affecter un écoulement des électrons. Une entrée de puissance anodique reçoit la puissance anodique à appliquer à l'anode, la puissance anodique étant caractérisée par un courant anodique, une tension anodique et une impédance anodique, l'impédance anodique étant un quotient de la tension anodique et du courant anodique. Une entrée de puissance d'électroaimant reçoit une puissance d'électroaimant et applique la puissance d'électroaimant à un électroaimant pour commander une intensité d'un champ magnétique, la puissance d'électroaimant étant caractérisée par un courant d'électroaimant. Un dispositif de commande ajuste au moins l'un des paramètres du magnétron pour affecter le flux d'électrons tout en maintenant la constante d'impédance anodique.
Also published as
Latest bibliographic data on file with the International Bureau