Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020223558 - TRICYCLIC AMINE COMPOUNDS AS CDK2 INHIBITORS

Note: Text based on automatic Optical Character Recognition processes. Please use the PDF version for legal matters

[ EN ]

What is claimed is:

1. A compound of Formula (I):


or a pharmaceutically acceptable salt thereof, wherein:

n is 0, 1, or 2;

m is 0, 1, 2, 3, or 4;

Z1 is CR4R5; and Z2 is NR6z, O, or S; or

Z1 is CR4R5, NR6, O, or S; and Z2 is CR4zR5z;

Y is N or CR7;

X1 is C; and X2 is NR2x; or

X1 is N; and X2 is N or CR2;

wherein Ring
is an aromatic ring selected from:

Ring moiety A is selected from (1) C6-10 aryl; (2) 5-10 membered monocyclic or bicyclic heteroaryl, having 1, 2, 3, or 4 ring-forming heteroatoms independently selected from N, O, and S; and (3) a fused bicyclic moiety of formula:


wherein Ring B is (a) phenyl or (b) 5-6 membered heteroaryl having 1, 2, or 3 ring-forming heteroatoms independently selected from N, O, and S; and Ring B” is (a) C5-7 membered cycloalkyl, wherein 1 or 2 ring-forming carbon atoms of said C5-7 cycloalkyl can be optionally substituted by 1 or 2 oxo or sulfido; or (b) 4-7 membered heterocycloalkyl having 1, 2 or 3 ring-forming heteroatoms independently selected from N, O, and S, wherein 1 or 2 ring-forming carbon or heteroatoms can be optionally substituted by 1 or 2 oxo or sulfido;

R1 is selected from H, D, halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, 5-10 membered heteroaryl- C1-4 alkyl, ORa1, SRa1, NHORa1, C(O)Rb1, C(O)NRc1Rd1, C(O)NRc1(ORa1), C(O)ORa1, OC(O)Rb1, OC(O)NRc1Rd1, NRc1Rd1, NRc1NRc1Rd1, NRc1C(O)Rb1, NRc1C(O)ORa1, NRc1C(O)NRc1Rd1, C(=NRe1)Rb1, C(=NRe1)NRc1Rd1, NRc1C(=NRe1)NRc1Rd1, NRc1C(=NRe1)Rb1, NRc1S(O)NRc1Rd1,

NRc1S(O)Rb1, NRc1S(O)2Rb1, NRc1S(O)(=NRe1)Rb1, NRc1S(O)2NRc1Rd1, S(O)Rb1,

S(O)NRc1Rd1, S(O)2Rb1, S(O)2NRc1Rd1, OS(O)(=NRe1)Rb1, OS(O)2Rb1, S(O)(=NRe1)Rb1, SF5, P(O)Rf1Rg1, OP(O)(ORh1)(ORi1), P(O)(ORh1)(ORi1), and BRj1Rk1; wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R1A substituents; each Ra1, Rc1, and Rd1 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4

independently selected R1A substituents;

or, any Rc1 and Rd1 attached to the same N atom, together with the N atom to which they are attached, form a 4-10 membered heterocycloalkyl group, which is optionally substituted with 1, 2, 3, or 4 independently selected R1A substituents;

each Rb1 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected R1A substituents;

each Re1 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rf1 and Rg1 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rh1 and Ri1 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rj1 and Rk1 is independently selected from OH, C1-6 alkoxy, and C1-6 haloalkoxy; or any Rj1 and Rk1 attached to the same B atom, together with the B atom to which they are attached, form a 5- or 6-membered heterocycloalkyl group optionally substituted with 1, 2, 3, or 4 substituents independently selected from C1-6 alkyl and C1-6 haloalkyl;

each R1A is independently selected from D, halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered

heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, 5-10 membered heteroaryl-C1-4 alkyl, ORa11, SRa11, NHORa11, C(O)Rb11, C(O)NRc11Rd11, C(O)NRc11(ORa11), C(O)ORa11,

OC(O)Rb11, OC(O)NRc11Rd11, NRc11Rd11, NRc11NRc11Rd11, NRc11C(O)Rb11, NRc11C(O)ORa11, NRc11C(O)NRc11Rd11, C(=NRe11)Rb11, C(=NRe11)NRc11Rd11, NRc11C(=NRe11)NRc11Rd11, NRc11C(=NRe11)Rb11, NRc11S(O)NRc11Rd11, NRc11S(O)Rb11, NRc11S(O)2Rb11,

NRc11S(O)(=NRe11)Rb11, NRc11S(O)2NRc11Rd11, S(O)Rb11, S(O)NRc11Rd11, S(O)2Rb11, S(O)2NRc11Rd11, OS(O)(=NRe11)Rb11, OS(O)2Rb11, S(O)(=NRe11)Rb11, SF5, P(O)Rf11Rg11, OP(O)(ORh11)(ORi11), P(O)(ORh11)(ORi11), and BRj11Rk11, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4

alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R1B substituents;

each Ra11, Rc11, and Rd11 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered

heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R1B substituents;

or, any Rc11 and Rd11 attached to the same N atom, together with the N atom to which they are attached, form a 4-7 membered heterocycloalkyl group, which is optionally substituted with 1, 2, 3, or 4 independently selected R1B substituents;

each Rb11 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected R1B substituents;

each Re11 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rf11 and Rg11 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rh11 and Ri11 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rj11 and Rk11 is independently selected from OH, C1-6 alkoxy, and C1-6 haloalkoxy;

or any Rj11 and Rk11 attached to the same B atom, together with the B atom to which they are attached, form a 5- or 6-membered heterocycloalkyl group optionally substituted with 1, 2, 3, or 4 substituents independently selected from C1-6 alkyl and C1-6 haloalkyl;

each R1B is independently selected from D, halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, 5-6 membered heteroaryl-C1-4 alkyl, ORa12, SRa12, NHORa12, C(O)Rb12, C(O)NRc12Rd12, C(O)NRc12(ORa12), C(O)ORa12, OC(O)Rb12, OC(O)NRc12Rd12, NRc12Rd12, NRc12NRc12Rd12, NRc12C(O)Rb12, NRc12C(O)ORa12, NRc12C(O)NRc12Rd12, C(=NRe12)Rb12, C(=NRe12)NRc12Rd12, NRc12C(=NRe12)NRc12Rd12, NRc12C(=NRe12)Rb12, NRc12S(O)NRc12Rd12, NRc12S(O)Rb12, NRc12S(O)2Rb12, NRc12S(O)(=NRe12)Rb12,

NRc12S(O)2NRc12Rd12, S(O)Rb12, S(O)NRc12Rd12, S(O)2Rb12, S(O)2NRc12Rd12,

OS(O)(=NRe12)Rb12, OS(O)2Rb12, S(O)(=NRe12)Rb12, SF5, P(O)Rf12Rg12,

OP(O)(ORh12)(ORi12), P(O)(ORh12)(ORi12), and BRj12Rk12, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Ra12, Rc12, and Rd12 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered

heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

or, any Rc12 and Rd12 attached to the same N atom, together with the N atom to which they are attached, form a 4-7 membered heterocycloalkyl group, which is optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Rb12 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Re12 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rf12 and Rg12 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rh12 and Ri12 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rj12 and Rk12 is independently selected from OH, C1-6 alkoxy, and C1-6 haloalkoxy;

or any Rj12 and Rk12 attached to the same B atom, together with the B atom to which they are attached, form a 5- or 6-membered heterocycloalkyl group optionally substituted with 1, 2, 3, or 4 substituents independently selected from C1-6 alkyl and C1-6 haloalkyl;

R2 is selected from H, D, halo, NO2, CN, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, 5-10 membered heteroaryl-C1-4 alkyl, ORa2, SRa2, NHORa2, C(O)Rb2, C(O)NRc2Rd2, C(O)NRc2(ORa2), C(O)ORa2, OC(O)Rb2, OC(O)NRc2Rd2, NRc2Rd2, NRc2NRc2Rd2, NRc2C(O)Rb2, NRc2C(O)ORa2, NRc2C(O)NRc2Rd2, C(=NRe2)Rb2, C(=NRe2)NRc2Rd2, NRc2C(=NRe2)NRc2Rd2, NRc2C(=NRe2)Rb2, NRc2S(O)NRc2Rd2,

NRc2S(O)Rb2, NRc2S(O)2Rb2, NRc2S(O)(=NRe2)Rb2, NRc2S(O)2NRc2Rd2, S(O)Rb2,

S(O)NRc2Rd2, S(O)2Rb2, S(O)2NRc2Rd2, OS(O)(=NRe2)Rb2, OS(O)2Rb2, S(O)(=NRe2)Rb2, SF5, P(O)Rf2Rg2, OP(O)(ORh2)(ORi2), P(O)(ORh2)(ORi2), and BRj2Rk2; wherein said C1-6 alkyl, C2- 6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl- C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R2A substituents;

R2x is selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, 5-10 membered heteroaryl-C1-4 alkyl, C(O)Rb2, C(O)NRc2Rd2, C(O)NRc2(ORa2), C(O)ORa2, C(=NRe2)Rb2, C(=NRe2)NRc2Rd2, S(O)2Rb2, and S(O)2NRc2Rd2; wherein said C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R2A substituents;

each Ra2, Rc2, and Rd2 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4

independently selected R2A substituents;

or, any Rc2 and Rd2 attached to the same N atom, together with the N atom to which they are attached, form a 4-10 membered heterocycloalkyl group, which is optionally substituted with 1, 2, 3, or 4 independently selected R2A substituents;

each Rb2 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected R2A substituents;

each Re2 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10

membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rf2 and Rg2 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rh2 and Ri2 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rj2 and Rk2 is independently selected from OH, C1-6 alkoxy, and C1-6 haloalkoxy; or any Rj2 and Rk2 attached to the same B atom, together with the B atom to which they are attached, form a 5- or 6-membered heterocycloalkyl group optionally substituted with 1, 2, 3, or 4 substituents independently selected from C1-6 alkyl and C1-6 haloalkyl;

each R2A is independently selected from D, halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered

heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, 5-10 membered heteroaryl-C1-4 alkyl, ORa21, SRa21, NHORa21, C(O)Rb21, C(O)NRc21Rd21, C(O)NRc21(ORa21), C(O)ORa21,

OC(O)Rb21, OC(O)NRc21Rd21, NRc21Rd21, NRc21NRc21Rd21, NRc21C(O)Rb21, NRc21C(O)ORa21, NRc21C(O)NRc21Rd21, C(=NRe21)Rb21, C(=NRe21)NRc21Rd21, NRc21C(=NRe21)NRc21Rd21, NRc21C(=NRe21)Rb21, NRc21S(O)NRc21Rd21, NRc21S(O)Rb21, NRc21S(O)2Rb21,

NRc21S(O)(=NRe21)Rb21, NRc21S(O)2NRc21Rd21, S(O)Rb21, S(O)NRc21Rd21, S(O)2Rb21, S(O)2NRc21Rd21, OS(O)(=NRe21)Rb21, OS(O)2Rb21, S(O)(=NRe21)Rb21, SF5, P(O)Rf21Rg21, OP(O)(ORh21)(ORi21), P(O)(ORh21)(ORi21), and BRj21Rk21, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R2B

substituents;

each Ra21, Rc21, and Rd21 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered

heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R2B substituents;

or, any Rc21 and Rd21 attached to the same N atom, together with the N atom to which they are attached, form a 4-7 membered heterocycloalkyl group, which is optionally substituted with 1, 2, 3, or 4 independently selected R2B substituents;

each Rb21 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected R2B substituents;

each Re21 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rf21 and Rg21 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rh21 and Ri21 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rj21 and Rk21 is independently selected from OH, C1-6 alkoxy, and C1-6 haloalkoxy;

or any Rj21 and Rk21 attached to the same B atom, together with the B atom to which they are attached, form a 5- or 6-membered heterocycloalkyl group optionally substituted with 1, 2, 3, or 4 substituents independently selected from C1-6 alkyl and C1-6 haloalkyl;

each R2B is independently selected from D, halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, 5-6 membered heteroaryl-C1-4 alkyl, ORa22, SRa22, NHORa22, C(O)Rb22, C(O)NRc22Rd22, C(O)NRc22(ORa22), C(O)ORa22, OC(O)Rb22, OC(O)NRc22Rd22, NRc22Rd22, NRc22NRc22Rd22, NRc22C(O)Rb22, NRc22C(O)ORa22, NRc22C(O)NRc22Rd22, C(=NRe22)Rb22, C(=NRe22)NRc22Rd22, NRc22C(=NRe22)NRc22Rd22, NRc22C(=NRe22)Rb22, NRc22S(O)NRc22Rd22, NRc22S(O)Rb22, NRc22S(O)2Rb22, NRc22S(O)(=NRe22)Rb22,

NRc22S(O)2NRc22Rd22, S(O)Rb22, S(O)NRc22Rd22, S(O)2Rb22, S(O)2NRc22Rd22,

OS(O)(=NRe22)Rb22, OS(O)2Rb22, S(O)(=NRe22)Rb22, SF5, P(O)Rf22Rg22,

OP(O)(ORh22)(ORi22), P(O)(ORh22)(ORi22), and BRj22Rk22, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Ra22, Rc22, and Rd22 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered

heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

or, any Rc22 and Rd22 attached to the same N atom, together with the N atom to which they are attached, form a 4-7 membered heterocycloalkyl group, which is optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Rb22 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5- 6 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Re22 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rf22 and Rg22 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rh22 and Ri22 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rj22 and Rk22 is independently selected from OH, C1-6 alkoxy, and C1-6 haloalkoxy;

or any Rj22 and Rk22 attached to the same B atom, together with the B atom to which they are attached, form a 5- or 6-membered heterocycloalkyl group optionally substituted with 1, 2, 3, or 4 substituents independently selected from C1-6 alkyl and C1-6 haloalkyl;

R3 is selected from H, D, halo, CN, C1-4 alkyl, C1-4 haloalkyl, C2-4 alkenyl, C2-4 alkynyl, OH, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, di(C1-3 alkyl)amino, and C3-4 cycloalkyl;

R4, R4z, R5 and R5z are independently selected from H, D, halo, CN, C1-4 alkyl, C1-4 haloalkyl, C2-4 alkenyl, C2-4 alkynyl, OH, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, di(C1-3 alkyl)amino, cyano-C1-3 alkyl, HO-C1-3 alkyl, C1-3 alkoxy-C1-3 alkyl, and C3-4 cycloalkyl;

or R4 and R5, together with the carbon atom to which they are attached, form a 3-7 membered cycloalkyl ring or a 4-7 membered heterocycloalkyl ring, which are each optionally substituted by 1, 2, 3, or 4 substituents independently selected from D, halo, CN, C1-3 alkyl, C1-3 haloalkyl, OH, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, di(C1-3 alkyl)amino, cyano-C1-3 alkyl, HO-C1-3 alkyl, and C1-3 alkoxy-C1-3 alkyl;

or R4z and R5z, together with the carbon atom to which they are attached, form a 3-7 membered cycloalkyl ring or a 4-7 membered heterocycloalkyl ring, which are each

optionally substituted by 1, 2, 3, or 4 substituents independently selected from D, halo, CN, C1-3 alkyl, C1-3 haloalkyl, OH, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, di(C1-3 alkyl)amino, cyano-C1-3 alkyl, HO-C1-3 alkyl, and C1-3 alkoxy-C1-3 alkyl;

R6 and R6z are each independently selected from H, C1-4 alkyl, C1-4 haloalkyl, C2-4 alkenyl, C2-4 alkynyl, cyano-C1-3 alkyl, HO-C1-3 alkyl, C1-3 alkoxy-C1-3 alkyl, and C3-4 cycloalkyl;

R7 is selected from H, D, halo, CN, C1-4 alkyl, C1-4 haloalkyl, C2-4 alkenyl, C2-4 alkynyl, OH, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, di(C1-3 alkyl)amino, cyano-C1-3 alkyl, HO-C1-3 alkyl, C1-3 alkoxy-C1-3 alkyl, and C3-4 cycloalkyl;

each R8 is independently selected from H, D, halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, 5-6 membered heteroaryl-C1-4 alkyl, ORa8, SRa8, NHORa8, C(O)Rb8, C(O)NRc8Rd8, C(O)NRc8(ORa8), C(O)ORa8, OC(O)Rb8, OC(O)NRc8Rd8, NRc8Rd8, NRc8NRc8Rd8, NRc8C(O)Rb8, NRc8C(O)ORa8, NRc8C(O)NRc8Rd8, C(=NRe8)Rb8,

C(=NRe8)NRc8Rd8, NRc8C(=NRe8)NRc8Rd8, NRc8C(=NRe8)Rb8, NRc8S(O)NRc8Rd8,

NRc8S(O)Rb8, NRc8S(O)2Rb8, NRc8S(O)(=NRe8)Rb8, NRc8S(O)2NRc8Rd8, S(O)Rb8,

S(O)NRc8Rd8, S(O)2Rb8, S(O)2NRc8Rd8, OS(O)(=NRe8)Rb8, OS(O)2Rb8, S(O)(=NRe8)Rb8, SF5, P(O)Rf8Rg8, OP(O)(ORh8)(ORi8), and P(O)(ORh8)(ORi8); wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected RG substituents;

each Ra8, Rc8, and Rd8 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

or, any Rc8 and Rd8 attached to the same N atom, together with the N atom to which they are attached, form a 4-7 membered heterocycloalkyl, which is optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Rb8 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Re8 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rf8 and Rg8 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rh8 and Ri8 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

R8” is H, D, OH, NO2, CN, halo, C1-3 alkyl, C2-3 alkenyl, C2-3 alkynyl, C1-3 haloalkyl, cyano-C1-3 alkyl, HO-C1-3 alkyl, C1-3 alkoxy-C1-3 alkyl, C3-7 cycloalkyl, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, di(C1-3 alkyl)amino, thio, C1-3 alkylthio, C1-3

alkylsulfinyl, C1-3 alkylsulfonyl, carbamyl, C1-3 alkylcarbamyl, di(C1-3 alkyl)carbamyl, carboxy, C1-3 alkylcarbonyl, C1-3 alkoxycarbonyl, C1-3 alkylcarbonyloxy, C1-3

alkylcarbonylamino, C1-3 alkoxycarbonylamino, C1-3 alkylaminocarbonyloxy, C1-3 alkylsulfonylamino, aminosulfonyl, C1-3 alkylaminosulfonyl, di(C1-3 alkyl)aminosulfonyl, aminosulfonylamino, C1-3 alkylaminosulfonylamino, di(C1-3 alkyl)aminosulfonylamino, aminocarbonylamino, C1-3 alkylaminocarbonylamino, and di(C1-3 alkyl)aminocarbonylamino;

RA is NR9R10 or R11;

R9 is H, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered

heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents;

R10 is selected from H, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, and C3-4 cycloalkyl;

R11 is C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered

heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents; each R9A is selected from D, halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, 5-10 membered heteroaryl-C1-4 alkyl, ORa9, SRa9, NHORa9, C(O)Rb9, C(O)NRc9Rd9, C(O)NRc9(ORa9), C(O)ORa9, OC(O)Rb9, OC(O)NRc9Rd9, NRc9Rd9, NRc9NRc9Rd9, NRc9C(O)Rb9, NRc9C(O)ORa9, NRc9C(O)NRc9Rd9, C(=NRe9)Rb9, C(=NRe9)NRc9Rd9, NRc9C(=NRe9)NRc9Rd9, NRc9C(=NRe9)Rb9, NRc9S(O)NRc9Rd9,

NRc9S(O)Rb9, NRc9S(O)2Rb9, NRc9S(O)(=NRe9)Rb9, NRc9S(O)2NRc9Rd9, S(O)Rb9,

S(O)NRc9Rd9, S(O)2Rb9, S(O)2NRc9Rd9, OS(O)(=NRe9)Rb9, OS(O)2Rb9, S(O)(=NRe9)Rb9, SF5, P(O)Rf9Rg9, OP(O)(ORh9)(ORi9), P(O)(ORh9)(ORi9), and BRj9Rk9; wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R9B substituents; each Ra9, Rc9, and Rd9 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, wherein

said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4

independently selected R9B substituents;

or, any Rc9 and Rd9 attached to the same N atom, together with the N atom to which they are attached, form a 4-10 membered heterocycloalkyl group, which is optionally substituted with 1, 2, 3, or 4 independently selected R9B substituents;

each Rb9 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected R9B substituents;

each Re9 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rf9 and Rg9 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rh9 and Ri9 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-10 cycloalkyl, 6-10 membered aryl, 4-10 membered heterocycloalkyl, 5-10 membered heteroaryl, C3-10 cycloalkyl-C1-4 alkyl, 6-10 membered aryl-C1-4 alkyl, 4-10 membered heterocycloalkyl-C1-4 alkyl, and 5-10 membered heteroaryl-C1-4 alkyl;

each Rj9 and Rk9 is independently selected from OH, C1-6 alkoxy, and C1-6 haloalkoxy; or any Rj9 and Rk9 attached to the same B atom, together with the B atom to which they are attached, form a 5- or 6-membered heterocycloalkyl group optionally substituted with 1, 2, 3, or 4 substituents independently selected from C1-6 alkyl and C1-6 haloalkyl;

each R9B is selected from D, halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, 5-6 membered heteroaryl-C1-4 alkyl, ORa91, SRa91, NHORa91, C(O)Rb91, C(O)NRc91Rd91,

C(O)NRc91(ORa91), C(O)ORa91, OC(O)Rb91, OC(O)NRc91Rd91, NRc91Rd91, NRc91NRc91Rd91, NRc91C(O)Rb91, NRc91C(O)ORa91, NRc91C(O)NRc91Rd91, C(=NRe91)Rb91,

C(=NRe91)NRc91Rd91, NRc91C(=NRe91)NRc91Rd91, NRc91C(=NRe91)Rb91, NRc91S(O)NRc91Rd91, NRc91S(O)Rb91, NRc91S(O)2Rb91, NRc91S(O)(=NRe91)Rb91, NRc91S(O)2NRc91Rd91, S(O)Rb91, S(O)NRc91Rd91, S(O)2Rb91, S(O)2NRc91Rd91, OS(O)(=NRe91)Rb91, OS(O)2Rb91,

S(O)(=NRe91)Rb91, SF5, P(O)Rf91Rg91, OP(O)(ORh91)(ORi91), P(O)(ORh91)(ORi91), and BRj91Rk91; wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected RG substituents;

each Ra91, Rc91, and Rd91 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl, wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered

heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

or, any Rc91 and Rd91 attached to the same N atom, together with the N atom to which they are attached, form a 4-7 membered heterocycloalkyl group, which is optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Rb91 is independently selected from C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected RG substituents;

each Re91 is independently selected from H, OH, CN, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rf91 and Rg91 are independently selected from H, C1-6 alkyl, C1-6 alkoxy, C1-6 haloalkyl, C1-6 haloalkoxy, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rh91 and Ri91 is independently selected from H, C1-6 alkyl, C1-6 haloalkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl;

each Rj91 and Rk91 is independently selected from OH, C1-6 alkoxy, and C1-6 haloalkoxy;

or any Rj91 and Rk91 attached to the same B atom, together with the B atom to which they are attached, form a 5- or 6-membered heterocycloalkyl group optionally substituted with 1, 2, 3, or 4 substituents independently selected from C1-6 alkyl and C1-6 haloalkyl; and each RG is independently selected from OH, NO2, CN, halo, C1-3 alkyl, C2-3 alkenyl, C2-3 alkynyl, C1-3 haloalkyl, cyano-C1-3 alkyl, HO-C1-3 alkyl, C1-3 alkoxy-C1-3 alkyl, C3-7 cycloalkyl, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, di(C1-3 alkyl)amino, thio, C1-3 alkylthio, C1-3 alkylsulfinyl, C1-3 alkylsulfonyl, carbamyl, C1-3 alkylcarbamyl, di(C1-3 alkyl)carbamyl, carboxy, C1-3 alkylcarbonyl, C1-3 alkoxycarbonyl, C1-3 alkylcarbonyloxy, C1-3 alkylcarbonylamino, C1-3 alkoxycarbonylamino, C1-3 alkylaminocarbonyloxy, di(C1-3 alkyl)aminocarbonyloxy, C1-3 alkylsulfonylamino, aminosulfonyl, C1-3 alkylaminosulfonyl, di(C1-3 alkyl)aminosulfonyl, aminosulfonylamino, C1-3 alkylaminosulfonylamino, di(C1-3 alkyl)aminosulfonylamino, aminocarbonylamino, C1-3 alkylaminocarbonylamino, and di(C1-3 alkyl)aminocarbonylamino.

2. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein R1 is selected from H, halo, CN, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered

heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R1A substituents.

3. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein R1 is selected from H, halo, C1-6 alkyl, and C1-6 haloalkyl; wherein said C1-6 alkyl and C1-6 haloalkyl are each optionally substituted by 1, 2, or 3 independently selected R1A substituents.

4. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein R1 is selected from H and C1-4 alkyl.

5. The compound of any one of claims 1-3, or a pharmaceutically acceptable salt thereof, wherein:

each Ra1, Rc1, and Rd1 is independently selected from H, C1-6 alkyl, and C1-6 haloalkyl, wherein said C1-6 alkyl and C1-6 haloalkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R1A substituents;

each Rb1 is independently selected from C1-6 alkyl and C1-6 haloalkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected R1A substituents;

each R1A is independently selected from halo, CN, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, ORa11, and NRc11Rd11; and

each Ra11, Rc11, and Rd11 is independently selected from H, C1-6 alkyl and C1-6 haloalkyl.

6. The compound of any one of claims 1-5, or a pharmaceutically acceptable salt

thereof, wherein Ring


7. The compound of any one of claims 1-6, or a pharmaceutically acceptable salt thereof, wherein R2 is selected from H, halo, CN, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl are each optionally substituted by 1, 2, or 3 independently selected R2A substituents.

8. The compound of any one of claims 1-6, or a pharmaceutically acceptable salt thereof, wherein R2 is selected from H, halo, C1-6 alkyl, and C1-6 haloalkyl.

9. The compound of any one of claims 1-6, or a pharmaceutically acceptable salt thereof, wherein R2 is selected from H and C1-4 alkyl.

10. The compound of any one of claims 1-6, or a pharmaceutically acceptable salt

thereof, wherein Ring


11. The compound of any one of claims 1-5 and 10, or a pharmaceutically acceptable salt thereof, wherein R2x is selected from H, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl are each optionally substituted by 1, 2, or 3 independently selected R2A

substituents.

12. The compound of any one of claims 1-5 and 10, or a pharmaceutically acceptable salt thereof, wherein R2x is selected from H, C1-6 alkyl, and C1-6 haloalkyl.

13. The compound of any one of claims 1-5 and 10, or a pharmaceutically acceptable salt thereof, wherein R2x is selected from H and C1-4 alkyl.

14. The compound of any one of claims 1-7 and 10-11, or a pharmaceutically acceptable salt thereof, wherein:

each Ra2, Rc2, and Rd2 is independently selected from H, C1-6 alkyl, and C1-6 haloalkyl, wherein said C1-6 alkyl and C1-6 haloalkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R2A substituents;

each Rb2 is independently selected from C1-6 alkyl and C1-6 haloalkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected R2A substituents;

each R2A is independently selected from halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, ORa21, and NRc21Rd21; and

each Ra21, Rc21, and Rd21 is independently selected from H, C1-6 alkyl and C1-6 haloalkyl.

15. The compound of any one of claims 1-14, or a pharmaceutically acceptable salt thereof, wherein R3 is H.

16. The compound of any one of claims 1-15, or a pharmaceutically acceptable salt thereof, wherein Y is N.

17. The compound of any one of claims 1-16, or a pharmaceutically acceptable salt thereof, wherein Z1 is CR4R5; and Z2 is CR4zR5z or O.

18. The compound of any one of claims 1-17, or a pharmaceutically acceptable salt thereof, wherein R4, R4z, R5 and R5z are each independently selected from H and CH3.

19. The compound of any one of claims 1-17, or a pharmaceutically acceptable salt thereof, wherein R4, R4z, R5 and R5z are each H.

20. The compound of any one of claims 1-19, or a pharmaceutically acceptable salt thereof, wherein Ring moiety A is phenyl.

21. The compound of any one of claims 1-20, or a pharmaceutically acceptable salt thereof, wherein each R8 and R8” is independently selected from H, OH, CN, halo, C1-3 alkyl, C1-3 haloalkyl, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, and di(C1-3 alkyl)amino.

22. The compound of any one of claims 1-20, or a pharmaceutically acceptable salt thereof, wherein each R8 and R8” is independently selected from H and halo.

23. The compound of any one of claims 1-20, or a pharmaceutically acceptable salt thereof, wherein each R8 and R8” is independently selected from H and F.

24. The compound of any one of claims 1-23, or a pharmaceutically acceptable salt thereof, wherein RA is NR9R10.

25. The compound of any one of claims 1-24, or a pharmaceutically acceptable salt thereof, wherein R9 is selected from H, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered

heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents.

26. The compound of any one of claims 1-24, or a pharmaceutically acceptable salt thereof, wherein R9 is selected from H, C1-6 alkyl, C1-6 haloalkyl, and 4-7 membered heterocycloalkyl-C1-4 alkyl; wherein said C1-6 alkyl, C1-6 haloalkyl, and 4-7 membered heterocycloalkyl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents.

27. The compound of any one of claims 1-26, or a pharmaceutically acceptable salt thereof, wherein R10 is selected from H, C1-3 alkyl, and C1-3 haloalkyl.

28. The compound of any one of claims 1-26, or a pharmaceutically acceptable salt thereof, wherein R10 is selected from H and CH3.

29. The compound of any one of claims 1-23, or a pharmaceutically acceptable salt thereof, wherein RA is R11.

30. The compound of any one of claims 1-23 and 29, or a pharmaceutically acceptable salt thereof, wherein R11 is selected from C1-6 alkyl and C1-6 haloalkyl, which are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents.

31. The compound of any one of claims 1-23 and 29, or a pharmaceutically acceptable salt thereof, wherein R11 is C1-6 alkyl.

32. The compound of any one of claims 1-30, or a pharmaceutically acceptable salt thereof, wherein:

each R9A is independently selected from halo, CN, C1-6 alkyl, C1-6 haloalkyl, C3-4 cycloalkyl, ORa9, and NRc9Rd9; and

each Ra9, Rc9, and Rd9 is independently selected from H, C1-6 alkyl, and C1-6 haloalkyl.

33. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein: n is 0;

Z1 is CR4R5; and Z2 is O; or

Z1 is CR4R5 or O; and Z2 is CR4zR5z;

Y is N;

X1 is C; and X2 is NR2x; or

X1 is N; and X2 is N or CR2;

wherein Ring
is an aromatic ring selected from:

Ring A is phenyl;

R1 is selected from H, halo, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl are each optionally substituted by 1, 2, or 3 independently selected R1A

substituents;

each R1A is independently selected from halo, CN, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, ORa11, and NRc11Rd11;

each Ra11, Rc11, and Rd11 is independently selected from H, C1-6 alkyl and C1-6 haloalkyl;

R2 is selected from H, halo, CN, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl are each optionally substituted by 1, 2, or 3 independently selected R2A substituents;

R2x is selected from H, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, and 5-6 membered heteroaryl are each optionally substituted by 1, 2, or 3 independently selected R2A substituents;

each R2A is independently selected from halo, CN, NO2, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-6 haloalkyl, C3-7 cycloalkyl, ORa21, and NRc21Rd21;

each Ra21, Rc21, and Rd21 is independently selected from H, C1-6 alkyl and C1-6 haloalkyl;

R3 is H or halo;

R4, R4z, R5 and R5z are each independently selected from H and CH3;

each R8” is independently selected from H, OH, CN, halo, C1-3 alkyl, C1-3 haloalkyl, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, and di(C1-3 alkyl)amino;

RA is R11 or NR9R10;

R9 is selected from H, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered

heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents;

R10 is selected from H and C1-3 alkyl;

R11 is selected from C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl; which are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents;

each R9A is independently selected from halo, CN, NO2, C1-6 alkyl, C1-6 haloalkyl, ORa9, SRa9, C(O)Rb9, C(O)NRc9Rd9, C(O)ORa9, OC(O)Rb9, OC(O)NRc9Rd9, NRc9Rd9,

NRc9C(O)Rb9, NRc9C(O)ORa9, NRc9C(O)NRc9Rd9, NRc9S(O)2Rb9, NRc9S(O)2NRc9Rd9, S(O)2Rb9, and S(O)2NRc9Rd9, wherein said C1-6 alkyl and C1-6 haloalkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R9B substituents;

each Ra9, Rc9, and Rd9 is independently selected from H, C1-6 alkyl, and C1-6 haloalkyl, wherein said C1-6 alkyl and C1-6 haloalkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R9B substituents;

each Rb9 is independently selected from C1-6 alkyl and C1-6 haloalkyl, which are each optionally substituted with 1, 2, 3, or 4 independently selected R9B substituents; and

each R9B is independently selected from H, halo, CN, OH, C1-3 alkoxy, C1-3 haloalkoxy, amino, C1-3 alkylamino, and di(C1-3 alkylamino).

34. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein: n is 0;

Z1 is CR4R5; and Z2 is O; or

Z1 is CR4R5; and Z2 is CR4zR5z;

Y is N;

X1 is C; and X2 is NR2x; or

X1 is N; and X2 is CR2;

wherein Ring
is an aromatic ring selected from:

Ring A is phenyl;

R1 is selected from H, halo, C1-6 alkyl, and C1-6 haloalkyl; wherein said C1-6 alkyl and C1-6 haloalkyl are each optionally substituted by 1, 2, or 3 independently selected R1A substituents;

each R1A is independently selected from halo, CN, C1-6 alkyl, C1-6 haloalkyl, ORa11, and NRc11Rd11;

each Ra11, Rc11, and Rd11 is independently selected from H, C1-6 alkyl and C1-6 haloalkyl;

R2 is selected from H, halo, CN, C1-6 alkyl, and C1-6 haloalkyl; wherein said C1-6 alkyl and C1-6 haloalkyl are each optionally substituted by 1, 2, or 3 independently selected R2A substituents;

R2x is selected from H, C1-6 alkyl, and C1-6 haloalkyl; wherein said C1-6 alkyl and C1-6 haloalkyl are each optionally substituted by 1, 2, or 3 independently selected R2A

substituents;

each R2A is independently selected from halo, CN, C1-6 alkyl, C1-6 haloalkyl, ORa21, and NRc21Rd21;

each Ra21, Rc21, and Rd21 is independently selected from H, C1-6 alkyl and C1-6 haloalkyl;

R3 is H;

R4, R4z, R5 and R5z are each H;

RA is R11 or NR9R10;

each R8” is independently selected from H and halo;

R9 is selected from H, C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl; wherein said C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered

heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents;

R10 is selected from H and C1-3 alkyl;

R11 is selected from C1-6 alkyl, C1-6 haloalkyl, C3-7 cycloalkyl, phenyl, 4-7 membered heterocycloalkyl, 5-6 membered heteroaryl, C3-7 cycloalkyl-C1-4 alkyl, phenyl-C1-4 alkyl, 4-7 membered heterocycloalkyl-C1-4 alkyl, and 5-6 membered heteroaryl-C1-4 alkyl; which are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents;

each R9A is independently selected from halo, CN, NO2, C1-6 alkyl, C1-6 haloalkyl, ORa9, C(O)Rb9, C(O)NRc9Rd9, C(O)ORa9, OC(O)Rb9, OC(O)NRc9Rd9, NRc9Rd9,

NRc9C(O)Rb9, NRc9S(O)2Rb9, S(O)2Rb9, and S(O)2NRc9Rd9; and

each Ra9, Rc9, and Rd9 is independently selected from H, C1-6 alkyl, and C1-6 haloalkyl.

35. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein: n is 0;

m is 0 or 1;

Z1 is CR4R5; and Z2 is O; or

Z1 is CR4R5; and Z2 is CR4zR5z;

Y is N;

X1 is C; and X2 is NR2x; or

X1 is N; and X2 is CR2;

wherein Ring
is an aromatic ring selected from:

Ring A is phenyl;

R1 is selected from H, halo, C1-6 alkyl, and C1-6 haloalkyl;

R2 is selected from H, halo, C1-6 alkyl, and C1-6 haloalkyl;

R2x is selected from H, C1-6 alkyl, and C1-6 haloalkyl;

R3 is H;

R4, R4z, R5 and R5z are each H;

each R8” is independently selected from H and halo;

RA is R11 or NR9R10;

R9 is selected from H, C1-6 alkyl, C1-6 haloalkyl, C3-6 cycloalkyl, and 4-7 membered heterocycloalkyl-C1-4 alkyl, wherein said C1-6 alkyl, C1-6 haloalkyl, C3-6 cycloalkyl, and 4-7 membered heterocycloalkyl-C1-4 alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents;

R10 is selected from H and methyl;

R11 is selected from C1-6 alkyl, C1-6 haloalkyl, and C3-6 cycloalkyl, which are each optionally substituted by 1, 2, 3, or 4 independently selected R9A substituents;

each R9A is independently selected from halo, CN, C1-6 alkyl, C1-6 haloalkyl, C3-4 cycloalkyl, ORa9, and NRc9Rd9; and

each Ra9, Rc9, and Rd9 is independently selected from H, C1-6 alkyl, and C1-6 haloalkyl.

36. The compound of any one of claims 1-35, or a pharmaceutically acceptable salt thereof, wherein m is 0 or 1.

37. The compound of any one of claims 1-35, or a pharmaceutically acceptable salt thereof, the compound is a compound of Formula (IIb):


or a pharmaceutically acceptable salt thereof.

38. The compound of any one of claims 1-5, 10-13, and 15-35, having Formula (IVa):


or a pharmaceutically acceptable salt thereof.

39. The compound of any one of claims 1-5, 10-13, and 15-35, having Formula (IVb):


or a pharmaceutically acceptable salt thereof.

40. The compound of any one of claims 1-9 and 15-35, having Formula (IVc):


or a pharmaceutically acceptable salt thereof.

41. The compound of any one of claims 1-9 and 15-35, having Formula (IVd):


or a pharmaceutically acceptable salt thereof.

42. The compound of claim 1, selected from:

4-((1-Isopropyl-2-methyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-N-methylbenzenesulfonamide;

4-((1,2-Dimethyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-N,N-dimethylbenzenesulfonamide;

1,2-Dimethyl-N-(4-(methylsulfonyl)phenyl)-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-amine;

4-((1,2-Dimethyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-N-methylbenzenesulfonamide;

4-((1,2-Dimethyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-3-fluoro-N-methylbenzenesulfonamide;

4-((1,2-Dimethyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-N-isopropylbenzenesulfonamide;

4-((1,2-Dimethyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-N-(2-hydroxyethyl)benzenesulfonamide;

4-((5,6-Dihydroimidazo[1',2':1,6]pyrido[2,3-d]pyrimidin-2-yl)amino)benzenesulfonamide; and

4-((6H-Imidazo[1,2-d]pyrimido[5,4-b][1,4]oxazin-2-yl)amino)benzenesulfonamide; or a pharmaceutically acceptable salt thereof.

43. The compound of claim 1, selected from:

4-((1,2-Dimethyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-N-(2-(dimethylamino)ethyl)-3-fluorobenzenesulfonamide;

4-((1,2-Dimethyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-N-(3-(dimethylamino)propyl)-3-fluorobenzenesulfonamide; and

4-((1,2-Dimethyl-4,5-dihydro-1H-imidazo[4,5-h]quinazolin-8-yl)amino)-3-fluoro-N-((tetrahydrofuran-3-yl)methyl)benzenesulfonamide;

or a pharmaceutically acceptable salt thereof.

44. A pharmaceutical composition comprising a compound of any one of claims 1-43, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

45. A method of inhibiting CDK2, comprising contacting the CDK2 with the compound of any one of claims 1-43, or a pharmaceutically acceptable salt thereof.

46. A method of inhibiting CDK2 in a patient, comprising administering to the patient the compound of any one of claims 1-43, or a pharmaceutically acceptable salt thereof.

47. A method of treating a disease or disorder associated with CDK2 in a patient, comprising administering to the patient a therapeutically effective amount of the compound of any one of claims 1-43, or pharmaceutically acceptable salt thereof.

48. A method of treating a disease or disorder associated with CDK2 in a patient, comprising administering to the patient a therapeutically effective amount of the compound of any one of claims 1-43, or pharmaceutically acceptable salt thereof, wherein the disease or disorder is associated with an amplification of the cyclin E1 (CCNE1) gene and/or overexpression of CCNE1.

49. A method of treating a human subject having a disease or disorder associated with cyclin-dependent kinase 2 (CDK2), comprising administering to the human subject the compound of any one of claims 1-43, or a pharmaceutically acceptable salt thereof, wherein the human subject has been previously determined to:

(i)

(a) have a nucleotide sequence encoding a p16 protein comprising the amino acid sequence of SEQ ID NO:1; and/or

(b) have a cyclin dependent kinase inhibitor 2A (CDKN2A) gene lacking one or more inactivating nucleic acid substitutions and/or deletions;

(ii)

(a) have an amplification of the cyclin E1 (CCNE1) gene; and/or (b) have an expression level of CCNE1 in a biological sample obtained from the human subject that is higher than a control expression level of CCNE1.

50. A method of treating a human subject having a disease or disorder associated with cyclin-dependent kinase 2 (CDK2), comprising:

(i) identifying, in a biological sample obtained from the human subject:

(a) a nucleotide sequence encoding a p16 protein comprising the amino acid sequence of SEQ ID NO:1; and/or

(b) a cyclin dependent kinase inhibitor 2A (CDKN2A) gene lacking one or more inactivating nucleic acid substitutions;

(ii) identifying, in a biological sample obtained from the human subject:

(a) an amplification of the cyclin E1 (CCNE1) gene; and/or

(b) an expression level of CCNE1 that is higher than a control expression level of CCNE1; and

(iii) administering the compound of any one of claims 1-43, or a pharmaceutically acceptable salt thereof, to the human subject.

51. The method of claim 50, comprising:

(i) identifying, in a biological sample obtained from the human subject:

(a) a nucleotide sequence encoding a p16 protein comprising the amino acid sequence of SEQ ID NO:1; and/or

(b) a CDKN2A gene lacking one or more inactivating nucleic acid substitutions and/or deletions;

(ii) identifying, in a biological sample obtained from the human subject:

(a) an amplification of the CCNE1 gene; and

(iii) administering the compound or the salt to the human subject.

52. A method of evaluating the response of a human subject having a disease or disorder associated with cyclin-dependent kinase 2 (CDK2) to the compound of any one of claims 1-43, or a pharmaceutically acceptable salt thereof, comprising:

(a) administering the compound or the salt, to the human subject, wherein the human subject has been previously determined to have an amplification of the cyclin E1 (CCNE1) gene and/or an expression level of CCNE1 that is higher than a control expression level of CCNE1;

(b) measuring, in a biological sample of obtained from the subject subsequent to the administering of step (a), the level of retinoblastoma (Rb) protein phosphorylation at the serine corresponding to amino acid position 780 of SEQ ID NO:3,

wherein a reduced level of Rb phosphorylation at the serine corresponding to amino acid position 780 of SEQ ID NO:3, as compared to a control level of Rb phosphorylation at the serine corresponding to amino acid position 780 of SEQ ID NO:3, is indicative that the human subject responds to the compound or the salt.

53. The method of any one of claims 47-52, wherein the disease or disorder is cancer.