Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020142530 - SYSTEMS AND METHODS FOR OBTAINING DOWNHOLE FLUID PROPERTIES

Publication Number WO/2020/142530
Publication Date 09.07.2020
International Application No. PCT/US2019/069127
International Filing Date 31.12.2019
IPC
E21B 47/09 2012.01
EFIXED CONSTRUCTIONS
21EARTH OR ROCK DRILLING; MINING
BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
47Survey of boreholes or wells
09Locating or determining the position of objects in boreholes or wells; Identifying the free or blocked portions of pipes
G01V 5/04 2006.01
GPHYSICS
01MEASURING; TESTING
VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
5Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
04specially adapted for well-logging
CPC
E21B 17/1021
EFIXED CONSTRUCTIONS
21EARTH DRILLING; MINING
BEARTH DRILLING, e.g. DEEP DRILLING
17Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables;; Casings; Tubings
10Wear protectors; Centralising devices ; , e.g. stabilisers;
1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
1021with articulated arms or arcuate springs
E21B 47/07
EFIXED CONSTRUCTIONS
21EARTH DRILLING; MINING
BEARTH DRILLING, e.g. DEEP DRILLING
47Survey of boreholes or wells
06Measuring temperature or pressure
07Temperature
E21B 47/10
EFIXED CONSTRUCTIONS
21EARTH DRILLING; MINING
BEARTH DRILLING, e.g. DEEP DRILLING
47Survey of boreholes or wells
10Locating fluid leaks, intrusions or movements
E21B 47/103
EFIXED CONSTRUCTIONS
21EARTH DRILLING; MINING
BEARTH DRILLING, e.g. DEEP DRILLING
47Survey of boreholes or wells
10Locating fluid leaks, intrusions or movements
103using thermal measurements
E21B 49/08
EFIXED CONSTRUCTIONS
21EARTH DRILLING; MINING
BEARTH DRILLING, e.g. DEEP DRILLING
49Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
08Obtaining fluid samples or testing fluids, in boreholes or wells
E21B 49/0875
EFIXED CONSTRUCTIONS
21EARTH DRILLING; MINING
BEARTH DRILLING, e.g. DEEP DRILLING
49Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
08Obtaining fluid samples or testing fluids, in boreholes or wells
087Well testing, e.g. testing for reservoir productivity or formation parameters
0875determining specific fluid parameters
Applicants
  • BAKER HUGHES OILFIELD OPERATIONS LLC [US]/[US]
Inventors
  • SWETT, Dwight
  • PRICE, Daniel, Vaughn
  • FANINI, Otto
Agents
  • EVANS, Taylor, P.
Priority Data
16/730,73930.12.2019US
62/786,78231.12.2018US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) SYSTEMS AND METHODS FOR OBTAINING DOWNHOLE FLUID PROPERTIES
(FR) SYSTÈMES ET PROCÉDÉS PERMETTANT D'OBTENIR DES PROPRIÉTÉS DE FLUIDE DE FOND DE TROU
Abstract
(EN)
A downhole fluid analysis device (42) includes a piezoelectric helm resonator (92), a spectroscopy sensor (96) positioned symmetrically with respect to the piezoelectric helm resonator (92) in at least one direction, and a circuit (160) comprising a first terminal (162) and a second terminal (164) electrically coupled to a power supply. The piezoelectric helm resonator (92) and the spectroscopy sensor (96) are electrically coupled in parallel between the first and second terminals (162, 164). The power supply drives the piezoelectric helm resonator (92) with a voltage of a first polarity and the spectroscopy sensor (96) with a voltage of a second polarity. The circuit (160) includes at least one current flow control device (166) in the circuit (160) configured to prevent both the piezoelectric helm resonator (92) and the spectroscopy sensor (96) from being powered simultaneously.
(FR)
La présente invention concerne un dispositif d'analyse de fluide de fond de trou (42) qui comprend un résonateur piézoélectrique de Helm (92), un capteur de spectroscopie (96) positionné de manière symétrique par rapport au résonateur de Helm piézoélectrique (92) dans au moins une direction, et un circuit (160) comprenant une première borne (162) et une seconde borne (164) couplées électriquement à une alimentation électrique. Le résonateur piézoélectrique de Helm (92) et le capteur de spectroscopie (96) sont couplés électriquement en parallèle entre les première et seconde bornes (162, 164). L'alimentation électrique commande le résonateur piézoélectrique de Helm (92) avec une tension d'une première polarité et le capteur de spectroscopie (96) avec une tension d'une seconde polarité. Le circuit (160) comprend au moins un dispositif de commande de flux de courant (166) dans le circuit (160) configuré pour empêcher à la fois le résonateur piézoélectrique de Helm (92) et le capteur de spectroscopie (96) d'être alimentés en même temps.
Also published as
Latest bibliographic data on file with the International Bureau