Processing

Please wait...

PATENTSCOPE will be unavailable a few hours for maintenance reason on Tuesday 27.07.2021 at 12:00 PM CEST
Settings

Settings

Goto Application

1. WO2020137052 - POLYCRYSTALLINE DIAMOND FREE-STANDING SUBSTRATE, AND METHOD FOR MANUFACTURING SAME

Publication Number WO/2020/137052
Publication Date 02.07.2020
International Application No. PCT/JP2019/037652
International Filing Date 25.09.2019
IPC
H01L 21/02 2006.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
C23C 16/27 2006.1
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
22characterised by the deposition of inorganic material, other than metallic material
26Deposition of carbon only
27Diamond only
CPC
C01B 32/26
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
32Carbon; Compounds thereof
25Diamond
26Preparation
C23C 16/01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
01on temporary substrates, e.g. substrates subsequently removed by etching
C23C 16/02
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
02Pretreatment of the material to be coated
C23C 16/27
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
26Deposition of carbon only
27Diamond only
H01L 21/02
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
Applicants
  • 株式会社SUMCO SUMCO CORPORATION [JP]/[JP]
Inventors
  • 古賀 祥泰 KOGA Yoshihiro
Agents
  • 杉村 憲司 SUGIMURA Kenji
Priority Data
2018-24175025.12.2018JP
Publication Language Japanese (JA)
Filing Language Japanese (JA)
Designated States
Title
(EN) POLYCRYSTALLINE DIAMOND FREE-STANDING SUBSTRATE, AND METHOD FOR MANUFACTURING SAME
(FR) SUBSTRAT AUTOPORTEUR EN DIAMANT POLYCRISTALLIN ET PROCÉDÉ POUR FABRICATION DE CELUI-CI
(JA) 多結晶ダイヤモンド自立基板及びその製造方法
Abstract
(EN)
Provided is a method for manufacturing a polycrystalline diamond free-standing substrate in which high-quality compound semiconductor layers are laminated. Using, as nuclei, diamond particles 14 deposited on a single-crystal silicon substrate 10, a polycrystalline diamond layer 16 having a thickness of at least 100 μm is grown on the single-crystal silicon substrate 10 by means of a chemical vapor deposition method, wherein the value obtained by dividing the maximum grain size of crystal grains on the surface 16A of the polycrystalline diamond layer by the thickness of the polycrystalline diamond layer 16 is set to 0.20 or less. The surface 16A of the polycrystalline diamond layer is then planarized. A compound semiconductor substrate 20 is then bonded to the polycrystalline diamond layer 16 by a vacuum room-temperature bonding method or a plasma bonding method. The compound semiconductor substrate 20 is then reduced in thickness to form a compound semiconductor layer 22. The single crystal silicon substrate 10 is removed. Accordingly, a polycrystalline diamond free-standing substrate 100 in which the polycrystalline diamond layer 16 acts as a substrate for supporting the compound semiconductor layer 22 is obtained.
(FR)
L'invention concerne un procédé de fabrication d'un substrat autoportant en diamant polycristallin dans lequel des couches semi-conductrices composées de haute qualité sont stratifiées. En utilisant, en tant que noyaux, des particules de diamant 14 déposées sur un substrat en silicium monocristallin 10, une couche de diamant polycristallin 16 ayant une épaisseur d'au moins 100 µm est développée sur le substrat en silicium monocristallin 10 au moyen d'un procédé de dépôt chimique en phase vapeur, la valeur obtenue par division de la taille de grain maximale des grains cristallins sur la surface 16A de la couche de diamant polycristallin par l'épaisseur de la couche de diamant polycristallin 16 étant réglée à 0,20 ou moins. La surface 16A de la couche de diamant polycristallin est ensuite planarisée. Un substrat semi-conducteur composite 20 est ensuite lié à la couche de diamant polycristallin 16 par un procédé de liaison à température ambiante sous vide ou un procédé de liaison au plasma. Le substrat semi-conducteur composite 20 est ensuite réduit en épaisseur pour former une couche semi-conductrice composite 22. Le substrat en silicium monocristallin 20 est éliminé. En conséquence, on obtient un substrat autoporteur en diamant polycristallin 100 dans lequel la couche de diamant polycristallin 16 agit comme un substrat pour supporter la couche semi-conductrice composite 22.
(JA)
高品質な化合物半導体層が積層された多結晶ダイヤモンド自立基板を製造する方法を提供する。単結晶シリコン基板10上に付着させたダイヤモンド粒子14を核として、化学気相成長法により、単結晶シリコン基板10上に厚さが100μm以上の多結晶ダイヤモンド層16を成長させる。その際、多結晶ダイヤモンド層の表面16Aにおける結晶粒の最大粒径を多結晶ダイヤモンド層16の厚さで割った値を0.20以下とする。その後、多結晶ダイヤモンド層の表面16Aを平坦化する。その後、真空常温接合法又はプラズマ接合法により、多結晶ダイヤモンド層16に化合物半導体基板20を貼り合わせる。その後、化合物半導体基板20を減厚して、化合物半導体層22とする。単結晶シリコン基板10を除去する。こうして、多結晶ダイヤモンド層16が化合物半導体層22の支持基板として機能する多結晶ダイヤモンド自立基板100を得る。
Also published as
Latest bibliographic data on file with the International Bureau