Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020115610 - GAS NETWORK AND METHOD FOR DETECTING LEAKS IN A GAS NETWORK UNDER PRESSURE OR UNDER VACUUM

Publication Number WO/2020/115610
Publication Date 11.06.2020
International Application No. PCT/IB2019/060166
International Filing Date 26.11.2019
IPC
G01M 3/28 2006.01
GPHYSICS
01MEASURING; TESTING
MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
3Investigating fluid tightness of structures
02by using fluid or vacuum
26by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
28for pipes, cables, or tubes; for pipe joints or seals; for valves
F15B 19/00 2006.01
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
19Testing fluid-pressure actuator systems or apparatus, so far as not provided for elsewhere
F17D 5/02 2006.01
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
17STORING OR DISTRIBUTING GASES OR LIQUIDS
DPIPE-LINE SYSTEMS; PIPE-LINES
5Protection or supervision of installations
02Preventing, monitoring, or locating loss
F17D 5/06 2006.01
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
17STORING OR DISTRIBUTING GASES OR LIQUIDS
DPIPE-LINE SYSTEMS; PIPE-LINES
5Protection or supervision of installations
02Preventing, monitoring, or locating loss
06using electric or acoustic means
CPC
F15B 19/005
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
19Testing; ; Calibrating; Fault detection or monitoring; Simulation or modelling of; fluid-pressure systems or apparatus not otherwise provided for
005Fault detection or monitoring
F15B 20/005
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
20Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
005Leakage; Spillage; Hose burst
F15B 2211/50518
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
2211Circuits for servomotor systems
50Pressure control
505characterised by the type of pressure control means
50509the pressure control means controlling a pressure upstream of the pressure control means
50518using pressure relief valves
F15B 2211/6309
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
2211Circuits for servomotor systems
60Circuit components or control therefor
63Electronic controllers
6303using input signals
6306representing a pressure
6309the pressure being a pressure source supply pressure
F15B 2211/6323
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
2211Circuits for servomotor systems
60Circuit components or control therefor
63Electronic controllers
6303using input signals
632representing a flow rate
6323the flow rate being a pressure source flow rate
F15B 2211/634
FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
2211Circuits for servomotor systems
60Circuit components or control therefor
63Electronic controllers
6303using input signals
634representing a state of a valve
Applicants
  • ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP [BE]/[BE]
Inventors
  • GEUENS, Philippe
  • LOUARROUDI, Ebrahim
Agents
  • VAN VARENBERG, Patrick
  • DONNÉ, Eddy
Priority Data
2018/586107.12.2018BE
Publication Language English (EN)
Filing Language Dutch (NL)
Designated States
Title
(EN) GAS NETWORK AND METHOD FOR DETECTING LEAKS IN A GAS NETWORK UNDER PRESSURE OR UNDER VACUUM
(FR) RÉSEAU DE GAZ ET PROCÉDÉ DE DÉTECTION DE FUITES DANS UN RÉSEAU DE GAZ SOUS PRESSION OU SOUS VIDE
Abstract
(EN)
Method, for detecting and quantifying leaks {13} in a gas network (1) under pressure or vacuum, the gas network (1) comprising: - one or more sources (6) of compressed gas or vacuum; - one or more consumers (7) or consumer areas of compressed gas or vacuum applications; - pipelines or a network of pipelines (5) to transport the gas or vacuum from the sources (6) to the consumers (7), consumer areas or applications; - a plurality of sensors (9a, 9b) which determine one or a plurality of physical parameters of the gas at different times and.locations in the gas network (1); characterized in that the gas network (1) is further provided with a number of controllable or adjustable relief valves (10) and that the method comprises the following steps: - a training phase (16) in which a mathematical model is established between the measurements of a first group of sensors (9a, 9b) and a second group of sensors (9a, 9b), based on different measurements of these sensors (9a, 9b) in which the adjustable relief valves (10) are controlled in a predetermined order and according to well-designed scenarios to generate leaks (13); - an operational phase (17), in which the mathematical model established between the measurements of the first group of sensors (9a, 9b) and the second group of sensors (9a, 9b) is used to detect, locate and quantify leaks (13) in the gas network (1); wherein the operational phase (17) comprises the following steps: - controlling the relief valves in a predetermined order and according to 'well-designed scenarios; - reading out the first group of sensors (9a, 9b); based on these readout measurements, calculating or determining the value of the second group of sensors (9a, 9b) with the help of the mathematical,model; - comparing the calculated or determined values of the second group of sensors (9a, 9b) with the read values of the second group of sensors (9a, 9b) and determining the difference between them; - determining whether there is a leak (13) in the gas network (1) on the basis of the aforementioned difference and any of its derivatives; - generating an alarm if a leak (13) is detected and/or; generating a leakage rate and/or generating the corresponding leakage cost as well as any location if a leak (13) is detected.
(FR)
L'invention concerne un procédé de détection et de quantification de fuites {13} dans un réseau de gaz (1) sous pression ou sous vide, ce réseau de gaz (1) comprenant : -une ou plusieurs sources (6) de gaz comprimé ou sous vide; -un ou plusieurs consommateurs (7) ou des zones de consommation d'applications de gaz comprimé ou sous vide; -des pipelines ou un réseau de pipelines (5) pour transporter le gaz ou le vide à partir des sources (6) vers les consommateurs (7), des zones de consommation ou des applications;-une pluralité de capteurs (9a, 9b) qui déterminent un ou plusieurs paramètres physiques du gaz à des instants différents et des emplacements dans le réseau de gaz (1); caractérisé en ce que le réseau de gaz (1) est en outre pourvu d'un certain nombre de soupapes de détente commandables ou réglables (10) et que le procédé comprend les étapes suivantes : -une phase d'apprentissage (16) dans laquelle un modèle mathématique est établi entre les mesures d'un premier groupe de capteurs (9a, 9b) et d'un second groupe de capteurs (9a, 9b), sur la base de différentes mesures de ces capteurs (9a, 9b) dans lesquelles les soupapes de détente réglables (10) sont commandées dans un ordre prédéterminé et selon des scénarios bien conçus pour générer des fuites (13);-une phase opérationnelle (17), dans laquelle le modèle mathématique établi entre les mesures du premier groupe de capteurs (9a, 9b) et le deuxième groupe de capteurs (9a, 9b) est utilisé pour détecter, localiser et quantifier des fuites (13) dans le réseau de gaz (1); la phase opérationnelle (17) comprenant les étapes suivantes : -commander les soupapes de détente dans un ordre prédéterminé et selon des scénarios bien conçus;-lire le premier groupe de capteurs (9a, 9b); sur la base de ces mesures de lecture, calculer ou déterminer la valeur du second groupe de capteurs (9a, 9b) à l'aide du modèle mathématique; comparer les valeurs calculées ou déterminées du second groupe de capteurs (9a, 9b) avec les valeurs lues du second groupe de capteurs (9a, 9b) et déterminer la différence entre eux;-déterminer s'il existe une fuite (13) dans le réseau de gaz (1) sur la base de la différence susmentionnée et de l'un quelconque de ses dérivés;-générer une alarme si une fuite (13) est détectée et/ou; générer un taux de fuite et/ou générer un taux de fuite et/ou générer le coût de fuite correspondant ainsi que tout emplacement si une fuite (13) est détectée.
Latest bibliographic data on file with the International Bureau