Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020112938 - FLUID CONTACT PROCESS, COATED ARTICLE, AND COATING PROCESS

Publication Number WO/2020/112938
Publication Date 04.06.2020
International Application No. PCT/US2019/063513
International Filing Date 27.11.2019
IPC
C23C 16/02 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
02Pretreatment of the material to be coated
C23C 16/24 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
22characterised by the deposition of inorganic material, other than metallic material
24Deposition of silicon only
C23C 16/56 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
56After-treatment
C23C 28/00 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
28Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups C23C2/-C23C26/173
B23K 35/02 2006.01
BPERFORMING OPERATIONS; TRANSPORTING
23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
35Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
02characterised by mechanical features, e.g. shape
CPC
C23C 16/0272
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
02Pretreatment of the material to be coated
0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
C23C 16/24
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
24Deposition of silicon only
C23C 16/56
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
56After-treatment
Applicants
  • SILCOTEK CORP [US]/[US]
Inventors
  • YUAN, Min
Agents
  • OLTMANS, Andrew L.
  • LEPPO, Shawn K.
  • O'BRIAN, K. Scott
  • MARCUS, David M.
  • CROUSE, Brett A.
  • HAVERSTICK, Kraig L.
  • DOBREA, Diane H.
Priority Data
62/772,74729.11.2018US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) FLUID CONTACT PROCESS, COATED ARTICLE, AND COATING PROCESS
(FR) PROCÉDÉ DE CONTACT FLUIDIQUE, ARTICLE REVÊTU ET PROCÉDÉ DE REVÊTEMENT
Abstract
(EN)
Fluid contact process, coated article, and coating processes are disclosed. The fluid contact process includes flowing a corrosive fluid to contact a coated article. The coated article includes an aluminum-containing substrate, a first region on the aluminum-containing substrate, the first region comprising carbon and silicon, a second region distal from the aluminum-containing substrate in comparison to the first region, the second region having oxygen at a greater concentration, by weight, than the first region, a third region distal from the first region in comparison to the second region, the third region comprising amorphous silicon. The coating process includes positioning the aluminum-containing substrate within an enclosed chamber, then, thermally decomposing dimethylsilane-and-silane-containing mixture within the enclosed chamber, then thermally oxidizing, and then, thermally decomposing silane.
(FR)
L'invention concerne un procédé de contact fluidique, un article revêtu et des procédés de revêtement. Le procédé de contact fluidique consiste à faire écouler un fluide corrosif pour entrer en contact avec un article revêtu. L'article revêtu comprend un substrat contenant de l'aluminium, une première région sur le substrat contenant de l'aluminium, la première région comportant du carbone et du silicium, une deuxième région distale du substrat contenant de l'aluminium par rapport à la première région, la deuxième région ayant de l'oxygène à une concentration plus élevée, en poids, que la première région, une troisième région distale de la première région par rapport à la deuxième région, la troisième région comportant du silicium amorphe. Le procédé de revêtement consiste à positionner le substrat contenant de l'aluminium à l'intérieur d'une chambre fermée, puis à effectuer une décomposition thermique du mélange contenant du diméthylsilane et du silane à l'intérieur de la chambre fermée, puis à effectuer une oxydation thermique, puis une décomposition thermique du silane.
Latest bibliographic data on file with the International Bureau