Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020112329 - FILM STACK OVERLAY IMPROVEMENT FOR 3D NAND APPLICATION

Publication Number WO/2020/112329
Publication Date 04.06.2020
International Application No. PCT/US2019/060610
International Filing Date 08.11.2019
IPC
H01J 37/32 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
37Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
32Gas-filled discharge tubes
CPC
C23C 16/24
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
24Deposition of silicon only
C23C 16/345
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
34Nitrides
345Silicon nitride
C23C 16/401
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
40Oxides
401containing silicon
C23C 16/45565
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
455characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
45563Gas nozzles
45565Shower nozzles
C23C 16/4584
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
458characterised by the method used for supporting substrates in the reaction chamber
4582Rigid and flat substrates, e.g. plates or discs
4583the substrate being supported substantially horizontally
4584the substrate being rotated
C23C 16/5096
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
50using electric discharges
505using radio frequency discharges
509using internal electrodes
5096Flat-bed apparatus
Applicants
  • APPLIED MATERIALS, INC. [US]/[US]
Inventors
  • HAN, Xinhai
  • PADHI, Deenesh
  • BENJAMIN RAJ, Daemian Raj
  • ENSLOW, Kristopher
  • WANG, Wenjiao
  • OGATA, Masaki
  • ADDEPALLI, Sai Susmita
  • JORAPUR, Nikhil Sudhindrarao
  • CHICHKANOFF, Gregory Eugene
  • SRIVASTAVA, Shailendra
  • BAEK, Jonghoon
  • IBRAHIMI, Zakaria
  • ROCHA-ALVAREZ, Juan Carlos
  • GUNG, Tza-Jing
Agents
  • DOUGHERTY, Chad M.
  • VER STEEG, Steven H.
Priority Data
62/773,52230.11.2018US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) FILM STACK OVERLAY IMPROVEMENT FOR 3D NAND APPLICATION
(FR) AMÉLIORATION DE RECOUVREMENT D'EMPILEMENT DE FILMS POUR UNE APPLICATION NON-ET 3D
Abstract
(EN)
Embodiments of the disclosure describe an apparatus and a method for depositing a film layer that may have minimum contribution to overlay error after a sequence of deposition and lithographic exposure processes. In one example, a method includes positioning a substrate on a substrate support in a process chamber, and flowing a deposition gas mixture comprising a silicon containing gas and a reacting gas to the process chamber through a showerhead having a convex surface facing the substrate support or a concave surface facing the substrate support in accordance with a stress profile of the substrate. A plasma is formed in the presence of the deposition gas mixture in the process chamber by applying an RF power to multiple coupling points of the showerhead that are symmetrically arranged about a center point of the showerhead. A deposition process is then performed on the substrate.
(FR)
Des modes de réalisation de l'invention concernent un appareil et un procédé pour déposer une couche de film qui peut avoir une contribution minimale à une erreur de recouvrement après une séquence de processus de dépôt et d'exposition lithographique. Dans un exemple, un procédé comprend le positionnement d'un substrat sur un support de substrat dans une chambre de traitement, et l'écoulement d'un mélange gazeux de dépôt comprenant un gaz contenant du silicium et un gaz de réaction dans la chambre de traitement par l'intermédiaire d'une pomme de douche ayant une surface convexe faisant face au support de substrat ou une surface concave faisant face au support de substrat conformément à un profil de contrainte du substrat. Un plasma est formé en présence du mélange de gaz de dépôt dans la chambre de traitement par application d'une puissance RF à de multiples points de couplage de la pomme de douche qui sont disposés symétriquement autour d'un point central de la pomme de douche. Un processus de dépôt est ensuite effectué sur le substrat.
Latest bibliographic data on file with the International Bureau