Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020110406 - OXIDE FILM FORMING DEVICE

Publication Number WO/2020/110406
Publication Date 04.06.2020
International Application No. PCT/JP2019/034881
International Filing Date 05.09.2019
IPC
H01L 21/31 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
04the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
18the devices having semiconductor bodies comprising elements of group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20-H01L21/26142
31to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers; Selection of materials for these layers
C23C 16/42 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
42Silicides
C23C 16/455 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
44characterised by the method of coating
455characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
H01L 21/316 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
04the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
18the devices having semiconductor bodies comprising elements of group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20-H01L21/26142
31to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers; Selection of materials for these layers
314Inorganic layers
316composed of oxides or glassy oxides or oxide-based glass
CPC
C23C 16/40
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
40Oxides
C23C 16/42
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
42Silicides
C23C 16/455
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
455characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
H01L 21/31
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
02Manufacture or treatment of semiconductor devices or of parts thereof
04the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
18the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
31to form insulating layers thereon, e.g. for masking or by using photolithographic techniques
Applicants
  • 株式会社明電舎 MEIDENSHA CORPORATION [JP]/[JP]
Inventors
  • 亀田 直人 KAMEDA, Naoto
  • 三浦 敏徳 MIURA, Toshinori
  • 花倉 満 KEKURA, Mitsuru
Agents
  • 小林 博通 KOBAYASHI, Hiromichi
  • 富岡 潔 TOMIOKA, Kiyoshi
  • 鵜澤 英久 UZAWA, Hidehisa
  • 太田 友幸 OTA, Tomoyuki
Priority Data
2018-22508330.11.2018JP
Publication Language Japanese (JA)
Filing Language Japanese (JA)
Designated States
Title
(EN) OXIDE FILM FORMING DEVICE
(FR) DISPOSITIF DE FORMATION DE PELLICULE D’OXYDE
(JA) 酸化膜形成装置
Abstract
(EN)
Provided is an oxide film forming device (1) that includes a furnace housing (6a) in which a substrate (8) on which a film is to be formed is disposed and a furnace cover (6b). A mixed gas diffusing part (6c) is provided inside the furnace cover (6b) via a shield plate (12). A mixed gas buffer space (21) is formed in the mixed gas diffusing part (6c). A shower head plate (13) is formed on the mixed gas diffusing part (6c). An ozone gas buffer space (17) is formed in the furnace cover (6b) and the ozone gas buffer space (17) has a gas flow diffusion plate (20). Holes (13a) through which ozone gas passes and holes (13b) through which mixed gas passes are formed in the shower head plate (13). The holes (13a, 13b) are arranged in rectangular grids. The distance between adjacent holes 13a (and adjacent holes 13b) is 1 to 100 mm and the holes (13a, 13b) have a hole diameter of 0.1 to 10 mm.
(FR)
L’invention concerne un dispositif de formation de pellicule d’oxyde (1) qui inclut un logement de four (6a) dans lequel un substrat (8) sur lequel une pellicule doit être formée est disposé et un couvercle de four (6b). Une partie de diffusion de mélange gazeux (6c) est installée à l’intérieur du couvercle de four (6b) par le biais d’une plaque de blindage (12). Un espace tampon de mélange gazeux (21) est formé dans la partie de diffusion de mélange gazeux (6c). Une plaque de tête de douche (13) est formée sur la partie de diffusion de mélange gazeux (6c). Un espace tampon d’ozone gazeux (17) est formé dans le couvercle de four (6b) et l’espace tampon d’ozone gazeux (17) a une plaque de diffusion de flux gazeux (20). Des trous (13a) à travers lesquels l’ozone gazeux passe et des trous (13b) à travers lesquels le mélange gazeux passe sont formés dans la plaque de tête de douche (13). Les trous (13a, 13b) sont agencés dans des grilles rectangulaires. La distance entre des trous (13a) adjacents (et des trous (13b) adjacents) est comprise entre 1 et 100 mm et les trous (13a, 13b) ont un diamètre de trou compris entre 0,1 et 10 mm.
(JA)
被成膜基体(8)が配置される炉筐体(6a)と炉蓋(6b)を備える酸化膜形成装置(1)である。炉蓋(6b)の内側に、遮蔽板(12)を介して混合ガス拡散部(6c)を設ける。混合ガス拡散部(6c)に混合ガスバッファ空間(21)を形成する。混合ガス拡散部(6c)にシャワーヘッド板(13)を設ける。炉蓋(6b)にオゾンガスバッファ空間(17)を形成し、オゾンガスバッファ空間(17)にガス流拡散板(20)を備える。シャワーヘッド板(13)に、オゾンガスが通過する孔(13a)と、混合ガスが通過する孔(13b)を形成する。孔(13a、13b)をそれぞれ矩形格子状に配置する。隣り合う孔13a(および隣り合う孔13b)の距離は1mm以上、100mm以下であり、孔(13a、13b)の穴径は0.1mm以上、10mm以下である。
Also published as
Latest bibliographic data on file with the International Bureau