Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020109145 - DEVICE AND METHOD FOR THE PLASMA TREATMENT OF CONTAINERS

Publication Number WO/2020/109145
Publication Date 04.06.2020
International Application No. PCT/EP2019/082169
International Filing Date 22.11.2019
IPC
C23C 16/04 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
04Coating on selected surface areas, e.g. using masks
C23C 16/40 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
40Oxides
C23C 16/455 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
44characterised by the method of coating
455characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
C23C 16/511 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
44characterised by the method of coating
50using electric discharges
511using microwave discharges
C23C 16/52 2006.01
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition (CVD) processes
44characterised by the method of coating
52Controlling or regulating the coating process
H01J 37/32 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
37Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
32Gas-filled discharge tubes
CPC
C23C 16/045
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
04Coating on selected surface areas, e.g. using masks
045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
C23C 16/401
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
22characterised by the deposition of inorganic material, other than metallic material
30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
40Oxides
401containing silicon
C23C 16/45512
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
455characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
45512Premixing before introduction in the reaction chamber
C23C 16/45561
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
455characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
45561Gas plumbing upstream of the reaction chamber
C23C 16/511
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
50using electric discharges
511using microwave discharges
C23C 16/52
CCHEMISTRY; METALLURGY
23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
44characterised by the method of coating
52Controlling or regulating the coating process
Applicants
  • KHS CORPOPLAST GMBH [DE]/[DE]
Inventors
  • HERBORT, Michael
  • BEYERSDORFF, Björn
Agents
  • DTS PATENT- UND RECHTSANWÄLTE SCHNEKENBÜHL UND PARTNER MBB
Priority Data
10 2018 129 694.026.11.2018DE
Publication Language German (DE)
Filing Language German (DE)
Designated States
Title
(DE) VORRICHTUNG UND VERFAHREN ZUR PLASMABEHANDLUNG VON BEHÄLTERN
(EN) DEVICE AND METHOD FOR THE PLASMA TREATMENT OF CONTAINERS
(FR) DISPOSITIF ET PROCÉDÉ POUR LE TRAITEMENT PAR PLASMA DE RÉCIPIENTS
Abstract
(DE)
Die Erfindung betrifft eine Vorrichtung zur Plasmabehandlung von Behältern (5), aufweisend einen Prozessgaserzeuger (100) zum Erzeugen einer Prozessgasmischung, und zumindest eine Beschichtungsstation (3), die mindestens eine Plasmakammer (17) mit einem Behandlungsplatz (40) umfasst, in welcher mindestens ein Behälter (5) mit einem Behälterinnenraum (5.1) an dem Behandlungsplatz (40) einsetzbar und positionierbar ist, wobei die jeweilige Plasmakammer (17) zumindest teilweise evakuierbar ausgebildet ist, um das vom Prozessgaserzeuger (100) bereitgestellte Prozessgas durch den Behälter (5) zu saugen, das dessen Innenraum mittels Plasmabehandlung mit einer Innenbeschichtung versieht, und wobei zur Gewährleistung der Prozessstabilität an vorbestimmten Stellen der Vorrichtung Druckmesseinrichtungen (79, 96- 98) vorgesehen sind. Erfindungsgemäß ist vorgesehen, dass die Druckmesseinrichtungen (96-98) zumindest an einem Teil der vorbestimmten Stellen der Vorrichtung gasartabhängige Druckaufnehmer (86) umfassen.
(EN)
The invention relates to a device for the plasma treatment of containers (5), comprising a process gas producer (100) for producing a process gas mixture and comprising at least one coating station (3), which comprises at least one plasma chamber (17) having a treatment place (40), in which plasma chamber at least one container (5) having a container interior (5.1) can be inserted and positioned on the treatment place (40), each plasma chamber (17) being at least partially evacuable in order to suck the process gas provided by the process gas producer (100) through the container (5), the interior thereof thus being provided with an inner coating by means of plasma treatment, and pressure-measuring apparatuses (79, 96-98) being provided at predefined points of the device in order to ensure the process stability. According to the invention, the pressure-measuring apparatuses (96-98) at least at some of the predefined points of the device comprise gas-type-dependent pressure transducers (86).
(FR)
L'invention concerne un dispositif pour le traitement par plasma de récipients (5) présentant un dispositif de production de gaz de processus (100) pour produire un mélange de gaz de processus, et au moins une station de revêtement (3) qui comprend au moins une chambre à plasma (17) dotée d'un emplacement de traitement (40) dans laquelle au moins un récipient (5) doté d'un espace intérieur de récipient (5.1) peut être introduit ou positionné à l'emplacement de traitement (40), la chambre à plasma (17) respective étant conçue pour pouvoir être vidée au moins en partie pour permettre l'aspiration par le récipient (5) du gaz de processus fourni par le dispositif de production de gaz de processus (100), lequel gaz de processus réalise un revêtement intérieur de son espace intérieur de récipient par traitement par plasma, et la stabilité de processus étant garantie par la présence de dispositifs de mesure de pression (79, 96- 98) en des emplacements définis du dispositif. Selon l’invention, les dispositifs de mesure de pression (96-98) comprennent pour au moins une partie des emplacements définis du dispositif des capteurs de pression (86) dépendant du type de gaz.
Also published as
Latest bibliographic data on file with the International Bureau