Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020107762 - CTR ESTIMATION METHOD AND DEVICE, AND COMPUTER READABLE STORAGE MEDIUM

Publication Number WO/2020/107762
Publication Date 04.06.2020
International Application No. PCT/CN2019/080306
International Filing Date 29.03.2019
IPC
G06Q 30/02 2012.01
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
30Commerce, e.g. shopping or e-commerce
02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
CPC
G06K 9/6267
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
9Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
62Methods or arrangements for recognition using electronic means
6267Classification techniques
G06N 3/0454
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computer systems based on biological models
02using neural network models
04Architectures, e.g. interconnection topology
0454using a combination of multiple neural nets
G06N 3/08
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computer systems based on biological models
02using neural network models
08Learning methods
G06Q 30/0242
GPHYSICS
06COMPUTING; CALCULATING; COUNTING
QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
30Commerce, e.g. shopping or e-commerce
02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
0241Advertisement
0242Determination of advertisement effectiveness
Applicants
  • 深圳前海微众银行股份有限公司 WEBANK CO., LTD [CN]/[CN]
Inventors
  • 刘博 LIU, Bo
  • 郑文琛 ZHENG, Wenchen
  • 杨强 YANG, Qiang
Agents
  • 深圳市世纪恒程知识产权代理事务所 CENFO INTELLECTUAL PROPERTY AGENCY
Priority Data
201811432671.X27.11.2018CN
Publication Language Chinese (ZH)
Filing Language Chinese (ZH)
Designated States
Title
(EN) CTR ESTIMATION METHOD AND DEVICE, AND COMPUTER READABLE STORAGE MEDIUM
(FR) PROCÉDÉ ET DISPOSITIF D'ESTIMATION DE CTR ET SUPPORT D'ENREGISTREMENT LISIBLE PAR ORDINATEUR
(ZH) CTR预估方法、装置及计算机可读存储介质
Abstract
(EN)
A click through rate (CTR) estimation method and device, and a computer readable storage medium. The method comprises: acquiring different types of advertisement data samples to be trained (S10); training a preset neural network model on the basis of the advertisement data sample (S20); and acquiring advertisement data to be estimated, and inputting the advertisement data into the trained neural network model, so as to perform CTR estimation on the advertisement data (S30). The method effectively improves the accuracy of CTR estimation.
(FR)
La présente invention concerne un procédé et un dispositif d'estimation du taux de clics (CTR) et un support d'enregistrement lisible par ordinateur. Le procédé consiste à : acquérir différents types d'échantillons de données de publicité à entraîner (S10); entraîner un modèle de réseau neuronal prédéfini sur la base de l'échantillon de données de publicité (S20); et acquérir des données de publicité à estimer, et entrer les données de publicité dans le modèle de réseau neuronal entraîné, de façon à effectuer une estimation de CTR sur les données de publicité (S30). Le procédé améliore la précision de l'estimation de CTR.
(ZH)
一种CTR预估方法、预估装置及计算机可读存储介质,所述方法包括:获取待训练的不同类型的广告数据样本(S10);基于所述广告数据样本对预设的神经网络模型进行训练(S20);获取待预估的广告数据,并将所述广告数据输入至训练后的所述神经网络模型中,以便对所述广告数据进行点击率CTR预估(S30)。本方法有效地提高了CTR预估的准确性。
Also published as
Latest bibliographic data on file with the International Bureau