Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020072548 - SYSTEMS AND METHODS FOR DESIGNING CLINICAL TRIALS

Publication Number WO/2020/072548
Publication Date 09.04.2020
International Application No. PCT/US2019/054147
International Filing Date 01.10.2019
IPC
G16H 10/20 2018.01
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
10ICT specially adapted for the handling or processing of patient-related medical or healthcare data
20for electronic clinical trials or questionnaires
G16H 50/50 2018.01
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
50for simulation or modelling of medical disorders
G16H 50/70 2018.01
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
70for mining of medical data, e.g. analysing previous cases of other patients
CPC
G16H 10/20
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
10ICT specially adapted for the handling or processing of patient-related medical or healthcare data
20for electronic clinical trials or questionnaires
G16H 10/60
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
10ICT specially adapted for the handling or processing of patient-related medical or healthcare data
60for patient-specific data, e.g. for electronic patient records
G16H 50/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
30for calculating health indices; for individual health risk assessment
G16H 50/50
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
50for simulation or modelling of medical disorders
G16H 50/70
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
70for mining of medical data, e.g. analysing previous cases of other patients
Applicants
  • ORIGENT DATA SCIENCES, INC. [US]/[US]
Inventors
  • ENNIST, David L.
  • TAYLOR, Albert A.
  • BEAULIEU, Danielle E.
  • KEYMER, Michael A.
Agents
  • GLORIA, Christopher
  • JONATHAN BOCKMAN
Priority Data
16/149,95402.10.2018US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) SYSTEMS AND METHODS FOR DESIGNING CLINICAL TRIALS
(FR) SYSTÈMES ET PROCÉDÉS DE CONCEPTION D'ESSAIS CLINIQUES
Abstract
(EN)
A method for enrolling patient candidates in a clinical trial includes generating first prediction data indicating predicted progression of a condition for a first group of patients that participated in a first clinical trial using a predictive model and clinical data associated with the first group of patients; grouping clinical trial data into subsets based on the first prediction data; analyzing each subset of clinical trial data to generate a measure of efficacy of the treatment; establishing screening criteria for a second clinical trial by identifying at least one subset that has a measure of efficacy that is higher than a measure of efficacy of the treatment for the full first group of patients; receiving clinical data of a candidate for the second clinical trial; generating second prediction data for the candidate; and enrolling the candidate in the second clinical trial when the second prediction data satisfies the screening criteria.
(FR)
L'invention concerne un procédé pour inscrire des patients candidats dans un essai clinique, consistant à générer des premières données de prédiction indiquant une progression prédite d'une maladie pour un premier groupe de patients qui ont participé à un premier essai clinique à l'aide d'un modèle prédictif et de données cliniques associées au premier groupe de patients; à regrouper des données d'essai clinique en sous-ensembles sur la base des premières données de prédiction; à analyser chaque sous-ensemble de données d'essai clinique pour générer une mesure d'efficacité du traitement; à établir des critères de criblage pour un second essai clinique par identification d'au moins un sous-ensemble ayant une mesure d'efficacité supérieure à une mesure d'efficacité du traitement pour le premier groupe complet de patients; à recevoir des données cliniques d'un candidat pour le second essai clinique; à générer des secondes données de prédiction pour le candidat; et à inscrire le candidat dans le second essai clinique lorsque les secondes données de prédiction satisfont les critères de criblage.
Also published as
Latest bibliographic data on file with the International Bureau