Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2019048612) POWDER NOZZLE FOR A LASER MACHINE TOOL
Note: Text based on automatic Optical Character Recognition processes. Please use the PDF version for legal matters

Pulverdüse für eine Laserbearbeitungsmaschine

Beschreibung

Die vorliegende Erfindung betrifft eine Pulverdüse für eine Maschine zum Bearbeiten von Werkstücken und/oder zum Herstellen von Formkörpern durch ortsselektives Verfestigen von Werkstoffpulver zu zusammenhängenden Bereichen mittels eines Laserstrahls. Die Erfindung bezieht sich insbesondere auf eine Pulverdüse für eine Maschine zum Herstellen von Formkörpern nach dem Prinzip des selektiven Laserschmelzens, des selektiven Lasersinterns oder des Laserauftragsschweißens. Zusammenfassend für die verschiedenen Arten von Maschinen zum Bearbeiten/Fertigen/Herstellen eines Werkstücks beziehungsweise eines Formkörpers mit einem Laserstrahl wird im Folgenden der Begriff Laser-Werkzeugmaschine oder auch einfach Maschine verwendet.

Hintergrund

Mit dem Verfahren des selektiven Laserschmelzens, Lasersinterns oder Laserauftragsschweißens können Formkörper, wie etwa Maschinenteile, Werkzeuge, Prothesen, Schmuckstücke usw. gemäß Geometriebeschreibungsdaten der entsprechenden Formkörper, beispielsweise durch schichtweises Aufbauen aus einem metallischen oder keramischen Werkstoffpulver beziehungsweise aus einem Kunststoffpulver hergestellt beziehungsweise bearbeitet werden. Beim Herstellungsprozess wird das Werkstoffpulver durch einen fokussierten Laserstrahl in einem vorgegebenen Bereich, der einem ausgewählten Querschnittsbereich des Modells des Formkörpers entspricht, erhitzt, so dass das Werkstoffpulver in den bestrahlten Bereichen zu zusammenhängend verfestigten Abschnitten umgeschmolzen wird. Ein Schutzgas kann dabei eine Oxidation während des Aufbauprozesses verhindern. Nach dem Erkalten entsteht eine Werkstoffschicht, die mechanisch bearbeitet werden kann.

Zum Stand der Technik betreffend das Gebiet des selektiven Laserschmelzens wird zum Beispiel auf die DE 10 2015 222 689 AI verwiesen. Ferner ist eine Laser-Werkzeugmaschine der eingangs genannten Art zum Beispiel aus der EP 2 052 845 A2 bekannt. Eine Werkzeugmaschine zum Auftragsschweißen wird beispielsweise in der Offenlegungsschrift DE 10 2013 224 649 AI beschrieben. In der deutschen Offenlegungsschrift DE 196 30 147 AI wird ein Anschlusskopf zum Bearbeiten eines Werkstücks mittels eines Laserstrahls beschrieben, der einen automatischen Fokussierlinsen-Wechselmechanismus aufweist, der als Revolver ausgebildet ist.

Der Artikel "Laser-Einheit macht Auftragsschweißen auf Bearbeitungszentrum möglich" von Nowotny et al. in "MM Das Industriemagazin", 17/2009, Seite 42 ff., beschreibt eine Laserbearbeitungsoptik, die über einen Steilkegel in die Frässpindel einer CNC-Maschine eingesetzt wird. In den Laser-Brennpunkt wird Schweißgut (Werkstoffpulver) durch eine Pulverdüse zugeführt. In der gleichen Maschine kann das Werkstück gefräst werden.

In der Patentanmeldung US 2017/0136578 AI wird eine Maschine zum schichtweisen Aufbau eines dreidimensionalen Formkörpers durch Schmelzen eines Werkstoff pulvers mit einer gattungsgemäßen Pulverdüse beschrieben. Das Werkstoff pu Iver wird mittels der an einem Laserbearbeitungskopf befestigten Pulverdüse an einen Arbeitspunkt geleitet, wo es von einem Laserstrahl, der durch die Pulverdüse geführt wird, geschmolzen wird. Die Maschine weist eine Pulverdüsenwechseleinheit auf, welche die am Laserbearbeitungskopf befestigte Pulverdüse austauschen kann.

Aus der europäischen Patentanmeldung EP 2 062 679 AI ist ein Bearbeitungskopf für eine Laserbearbeitungsmaschine bekannt, der einen stationären Teil in Form eines seitlich offenen Gehäuses aufweist, welches einen Raum für ein Wechsel-Modul umschließt, das als Ganzes vom stationären Teil des Bearbeitungskopfes getrennt werden kann, ohne dass der stationäre Teil in Einzelteile zerlegt werden muss. Das Wechselmodul umfasst eine Fokussierungsoptik, die koaxial zum Laserstrahl bewegbar ist, und eine Messeinrichtung zum Bestimmen der Position der Fokussierungsoptik.

Eine Laser-Werkzeugmaschine wird üblicherweise mit einem Laser betrieben, der einen Laserstrahl mit einer Ausgangsleistung von mehreren hundert bis zu mehreren tausend Watt bereitstellt, die meist im Dauerbetrieb („Continuous Wave", CW) betrieben werden. Entscheidend für den Bearbeitungsprozess kann insbesondere der Energieübertrag vom Laserstrahl auf das Werkstoff pu Iver sein. Dieser wird einerseits durch das Absorptionsvermögen des Werkstoff pulvers und andererseits von der Intensität des Laserstrahls beeinflusst. Neben der absoluten Laserleistung bestimmt also der Strahldurchmesser den Schmelzprozess. Der Strahldurchmesser des Laserstrahls wird üblicherweise durch die Brennweite einer Fokussieroptik sowie durch den Strahldurchmesser des kollimierten Laserstrahls vor der Fokussieroptik bestimmt. Der Strahldurchmesser des kollimierten Laserstrahls kann insbesondere durch die Brennweite einer Kollimationsoptik festgelegt werden. Somit kann der Strahldurchmesser des fokussierten Laserstrahls, beziehungsweise die Taille eines gaußschen Laserstrahls, durch geeignete Wahl der Kollimationsoptik angepasst werden, ohne die Brennweite der Fokussieroptik zu verändern.

Gemäß dem Stand der Technik sind im Wesentlichen zwei Typen von Maschinen zum Bearbeiten von Werkstücken und/oder zum Herstellen von Formkörpern durch ortsselektives Verfestigen von Werkstoffpulver zu zusammenhängenden Bereichen mittels eines Laserstrahls, insbesondere durch selektives Laserschmelzen beziehungsweise selektives Lasersintern, bekannt. Die Maschinentypen unterscheiden sich unter Anderem hinsichtlich der Art und Weise, wie das Werkstoffpulver bereitgestellt wird. Bei einem ersten Maschinentyp wird ein Pulverbett schichtweise aufgebaut. Bei einem zweiten Maschinentyp wird das Werkstoffpulver mittels einer Pulverdüse am Ort der Bearbeitung bereitgestellt. Die vorliegende Erfindung betrifft insbesondere Maschinen, bei denen der Laserstrahl mittels eines Laserbearbeitungskopfes bereitgestellt wird. Der mechanische Aufbau zum Bewegen des Laserbearbeitungskopfes und/oder des Werkstücks kann beispielsweise wie bei einem bekannten Fünf-Achsen-Bearbeitungszentrum erfolgen, wobei statt einem mechanischen Werkzeug der Laserbearbeitungskopf vorgesehen ist. Seit einigen Jahren sind auf dem Markt auch Werkzeugmaschinen verfügbar, die sowohl eine Laserbearbeitung als auch eine spanende Bearbeitung, zum Beispiel mit einem Fräswerkzeug, erlauben. Bei solchen Hybrid-Bearbeitungszentren kann der Laserbearbeitungskopf an der Aufnahme der Werkzugspindel befestigt werden.

Der Laserbearbeitungskopf kann eine Vielzahl optischer Komponenten zum Manipulieren des Laserstrahls umfassen, wie zum Beispiel zum Kollimieren, Fokussieren, Umlenken, Überwachen, Schalten und/oder Modulieren der Leistung des Laserstrahls. Es hat sich als vorteilhaft erwiesen, möglichst viele Komponenten in einem als austauschbares Bauteil vormontierten Optikmodul zusammenzufassen, das über geeignete Mittel lösbar an der Maschine befestigt werden kann. Hierdurch kann die Wartung einer Laser-Werkzeugmaschine vereinfacht und beschleunigt werden, so dass die Maschine effizienter genutzt werden kann, da eine Leerlaufzeit der Maschine verkürzt werden kann. Die Pulverdüse ist in der Regel am Laserbearbeitungskopf befestigt.

Zusammenfassung

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Pulverdüse bereitzustellen, die schnell und auf einfache Weise ausgetauscht werden kann. Darüber hinaus soll die Pulverdüse einen möglichst homogenen Werkstoffpulverstrom für das Laserauftragsschweißen erzeugen können. Ferner soll eine Pulverdüse bereitgestellt werden, die auch bei sehr hohen Laserstrahlleistungen verwendet werden kann.

Gelöst wird die Aufgabe durch eine Pulverdüse mit einem im Wesentlichen rotationssymmetrischen Grundkörper mit einer axialen Durchgangsöffnung für einen Laserstrahl und Befestigungsmitteln zum lösbaren Befestigen der Pulverdüse an einem Laserbearbeitungskopf einer Maschine. Erfindungsgemäß weist die Pulverdüse Mittel zum Kühlen der Pulverdüse auf.

Beim Bearbeiten eines Werkstücks mit einem Laserstrahl kann gestreutes oder reflektiertes Laserlicht auf die Pulverdüse treffen. Hierdurch kann die Pulverdüse erhitzt werden. Insbesondere bei hohen Laserstrahlleistungen von mehreren tausend Watt besteht die Gefahr, dass die Pulverdüse sehr heiß werden kann. Um die vom Laserstrahl auf die Pulverdüse übertragene Hitze abzuleiten kann die Pulverdüse erfindungsgemäß gekühlt werden. Hierzu weist die Pulverdüse zum Beispiel einen Kreislauf für ein fluides Kühlmittel wie zum Beispiel Wasser auf.

Insbesondere kann die Pulverdüse während eines Bearbeitungsprozesses automatisch gewechselt werden, so dass beispielsweise bei einer Änderung des Durchmessers des Laserstrahls am Arbeitspunkt während des Bearbeitungsprozesses, automatisch eine passende Pulverdüse am Laserbearbeitungskopf befestigt werden kann.

Der Laserbearbeitungskopf kann ein lösbar befestigbares Optikmodul aufweisen, in oder an dem die optischen Komponenten zum Kollimieren und Fokussieren des Laserstrahls angeordnet sind. Die erfindungsgemäße Pulverdüse kann insbesondere direkt an einem solchen Optikmodul befestigt werden. Eine im Optikmodul angeordnete Kollimationslinse dient zum Kollimieren eines divergent in das Optikmodul eingekoppelten Laserstrahls. Beispielsweise kann der Laserstrahl mittels einer optischen Faser in das Optikmodul eingekoppelt werden. Das Optikmodul kann demnach Mittel zum Anschließen einer optischen Faser, insbesondere einen Faserkoppler, aufweisen. Da eine optische Faser Laserlicht über viele Meter transportieren kann, ist es möglich, den Laser an einem geschützten von der Prozesskammer entfernten Ort zu platzieren. Der kollimierte Laserstrahl kann durch eine am Optikmodul befestigte Fokussierlinse auf einen Brennpunkt fokussiert werden. Der Laserstrahl verlässt das Optikmodul somit als fokussierter Strahl.

Optikkomponenten von Laser-Werkzeugmaschinen können zum einen durch die relativ hohen Laserleistungen einem erhöhten Verschleiß unterliegen. Andererseits kann es insbesondere bei einer Hybridmaschine, die sowohl Laserbearbeitung als auch spanende Fertigungsverfahren durchführen kann, zu einer Verschmutzung von Optikkomponenten, zum Beispiel durch Kühlmittel, Staub, Späne und sonstige Partikel kommen. Ferner kann das Werkstoffpulver zu einer Verschmutzung von Optikkomponenten beitragen. Auf einer Optikkomponente abgelagerte Schmutzpartikel können insbesondere bei hohen Laserleistungen zu einer hohen Wärmeeinwirkung auf die Optikkomponente und somit zu deren Beschädigung führen. Daher ist es wünschenswert, wenn Optikkomponenten bei Beschädigung oder Verschmutzung schnell und einfach ausgetauscht werden können. Dies wird einerseits dadurch erreicht, dass das gesamte Optikmodul als vormontierte Baugruppe lösbar an einer Stellachse befestigt werden kann und somit leicht austauschbar ist. Andererseits ermöglichen austauschbare Optikkomponenten einen schnellen Wechsel ohne Ausbau des gesamten Optikmoduls. So kann beispielsweise ein im Optikmodul angeordneter Kollimationsoptikwechsler einen schnellen automatischen Wechsel der Kollimationsoptik ermöglichen, ohne dass ein Austausch des gesamten Kollimationswechslers beziehungsweise des Optikmoduls nötig ist.

Die im Optikmodul angeordneten Optikkomponenten können jeweils lösbar im oder am Gehäuse des Optikmoduls befestigt sein. Somit kann einerseits während des Betriebs der Maschine ein automatischer Wechsel der Optikkomponenten stattfinden. Andererseits kann ein zu wartendes Optikmodul durch ein Austauschen einzelner Optikkomponenten wieder in einen betriebsfähigen Zustand gebracht werden. Beispielsweise kann der Kollimationswechsler als austauschbares Modul lösbar im Gehäuse des Optikmoduls angeordnet sein und somit bei einer Wartung des Optikmoduls ausgetauscht werden.

Vorteilhafte Aus- und Weiterbildungen, welche einzeln oder in Kombination miteinander eingesetzt werden können, sind Gegenstand der abhängigen Ansprüche.

Das Optikmodul weist vorzugsweise Mittel zum Befestigen eines automatisch austauschbaren Fokussiermoduls auf. Das Fokussiermodul kann beispielsweise über mindestens zwei Spannbolzen mit dem Optikmodul verbunden werden. Das Optikmodul kann entsprechende Aufnahmen für die Spannbolzen aufweisen. Die Aufnahmen können insbesondere als elektromagnetisch, hydraulisch oder pneumatisch betätigbare oder über eine Feder gespannte Spannmechanismen ausgeführt sein. Das Optikmodul kann ferner Mittel zum Überwachen der Temperatur der Fokussieroptik oder eines Schutzglases der Fokussieroptik aufweisen. Durch das Vorsehen von Mitteln zum Befestigen eines automatisch austauschbaren Fokussiermoduls kann ein automatischer Wechsel der Fokussieroptik erfolgen. Diese kann dann ähnlich wie ein Werkzeug eines Bearbeitungszentrums während des Fertigungs- beziehungsweise Bearbeitungsprozesses vollautomatisch ausgetauscht werden. Durch das automatisierte Wechseln von Fokussieroptik und Kollimationsoptik kann der Strahldurchmesser des Laserstrahls im Fokus je nach Anforderung innerhalb eines großen Bereichs eingestellt werden. Die Spannbolzen erlauben ein schnelles und sicheres Befestigen des Fokussiermoduls am Optikmodul. Ferner sorgen die Spannbolzen dafür, dass das Fokussiermodul mit einer hohen Positionsgenauigkeit am Optikmodul befestigt werden kann.

Ein Fokussiermodul umfasst vorzugsweise einen im Wesentlichen zylindrischen Träger mit kreisförmigen Querschnitt, der beispielsweise aus einem Metall oder einer Metalllegierung gefertigt ist. Im Träger ist eine Fokussieroptik angeordnet. Vorzugsweise kann die Fokussieroptik lösbar im Träger des Fokussiermoduls befestigt werden, so dass ein Austauschen der Fokussieroptik möglich ist. Die Brennweite der Fokussieroptik kann beispielsweise einige hundert Millimeter betragen. Bei der Fokussieroptik kann es sich um eine gebräuchliche Sammellinse oder um eine Kombination aus mehreren Linsen handeln. Das Fokussiermodul weist vorzugsweise Mittel zum Messen der Temperatur der Fokussieroptik auf. Weiter ist bevorzugt, dass das Fokussiermodul Mittel zum Kühlen der Fokussieroptik aufweist.

Das Fokussiermodul kann mindestens ein Schutzglas zum Schützen der Fokussieroptik vor Verschmutzung aufweisen. Das Schutzglas kann auch vor mechanischen Einwirkungen auf die Fokussieroptik schützen. Das Schutzglas ist vorzugsweise lösbar im Träger des Fokussiermoduls befestigt. Bei Verschmutzung kann das Schutzglas ausgetauscht werden. Vorzugsweise ist auf beiden Seiten der Fokussieroptik in axialer Richtung im Träger des Fokussiermoduls ein Schutzglas angeordnet, so dass die Fokussieroptik von beiden Seiten vor Verschmutzung geschützt ist. Das Fokussiermodul kann auch Mittel zum Messen der Temperatur des mindestens einen Schutzglases aufweisen. Somit kann eine Verschmutzung eines Schutzglases zum Beispiel durch einen Temperaturanstieg festgestellt werden.

Das Optikmodul kann ferner Mittel zum Befestigen einer automatisch austauschbaren Pulverdüse aufweisen. Die Pulverdüse kann beispielsweise mindestens zwei Spannbolzen umfassen. Das Optikmodul kann entsprechende Aufnahmen zum Befestigen der Spannbolzen aufweisen. Die Aufnahmen können einen Spannmechanismus aufweisen, der insbesondere als hydraulisch oder pneumatisch betätigbarer oder über eine Feder gespannter Mechanismus ausgeführt sein kann. Die Spannbolzen erlauben ein schnelles und sicheres Befestigen der Pulverdüse am Optikmodul. Ferner sorgen die Spannbolzen dafür, dass die Pulverdüse mit einer hohen Positionsgenauigkeit am Optikmodul befestigt werden kann.

Die Pulverdüse kann einteilig oder mehrteilig aufgebaut sein. In einem mehrteiligen Aufbau kann die Pulverdüse einen Pulverdüsenflansch umfassen, an dem die Mittel zum Befestigen der Pulverdüse am Optikmodul, beispielsweise mindestens zwei Spannbolzen, angeordnet sind. Am Pulverdüsenflansch können zudem Schnittstellen zum Zuführen von Schutzgas, Trägergas, Kühlmittel und/oder Werkstoffpulver angeordnet sein. Der Pulverdüsenflansch kann vorzugsweise an einem mittleren Abschnitt, der als Träger für eine Pulverdüsenspitze ausgebildet ist, angeordnet sein. Die Pulverdüsenspitze kann lösbar am mittleren Abschnitt der Pulverdüse befestigbar sein, so dass ein Austauschen der Pulverdüsenspitze möglich ist.

Die Pulverdüse weist insbesondere im mittleren Abschnitt mindestens einen Kanal für Werkstoff pulver auf, um das Werkstoffpulver an den Brennpunkt des Lasers zu befördern. Vorzugsweise weist die Pulverdüse mindestens zwei oder drei oder vier oder mehr Werkstoffpulverkanäle auf, die auch verzweigt sein können, um das Werkstoff pulver möglichst gleichmäßig zum Laserbrennpunkt zu führen. Die Verzweigung der Werkstoffpulverkanäle

beziehungsweise die koaxiale Führung des Werkstoffpulvers erfolgt insbesondere in einer Spitze der Pulverdüse. Die Pulverdüsenspitze kann hierzu einen Ringspalt aufweisen, der eine gleichmäßige Verteilung des Werkstoff pulvers entlang einer koaxial zum Laserstrahl ausgebildeten ringförmigen Öffnung bewirkt. Vorzugsweise wird das Werkstoffpulver von den Werkstoffpulverkanälen über eine Vielzahl von Öffnungen in den Ringspalt geleitet, um das Werkstoffpulvers möglichst gleichverteilt in den Ringspalt zu führen.

Die Kanäle für das Werkstoff pulver können auch zum Zuführen eines Schutz- beziehungsweise Trägergases verwendet werden. Das Schutzgas dient dazu, eine Reaktion des erhitzten Werkstoffpulvers mit Luftsauerstoff zu unterbinden. Ferner kann das Schutzgas als Trägergas den Transport des Werkstoffpulvers bewirken. Das Werkstoff pulver wird dann von der Strömung des Trägergases mitgeführt und durch die Werkstoffpulverkanäle zum Arbeitspunkt am Brennpunkt des Laserstrahls getragen. Als Schutz- beziehungsweise Trägergas eignen sich insbesondere inerte Gase wie zum Beispiel Argon. Je mehr Werkstoffpulverkanäle in der Pulverdüse vorgesehen sind, desto größer kann die Flussrate des Werkstoff pulvers sein. Um das Werkstoff pulver möglichst gleichmäßig zum Brennpunkt des Laserstrahls zu leiten, hat sich eine Konfiguration mit mindestens drei oder vier Werkstoffpulverkanälen als vorteilhaft erwiesen. Optional kann die Pulverdüse eine Vielzahl verschiedener Werkstoffpulverkanäle mit unterschiedlichen Durchmessern für unterschiedliche Pulverkörnungen aufweisen.

Das Optikmodul kann eine Vielzahl von Schnittstellen umfassen, um Werkstoffpulver von am Optikmodul angeordneten Leitungen für das Werkstoffpulver in die Werkstoffpulverkanäle der Pulverdüse zu leiten. Die Schnittstellen können beispielsweise als Einlassöffnungen an einem Flansch zum Befestigen der Pulverdüse ausgebildet sein. Die Einlassöffnungen können Dichtmittel zum gasdichten Abdichten beim Befestigen der Pulverdüse am Optikmodul umfassen. Die Einlassöffnungen können Mittel zum Ausrichten der Einlassöffnungen mit den Leitungen am Optikmodul aufweisen.

Die Pulverdüse kann Kühlkanäle für ein fluides Kühlmittel zum Kühlen der Pulverdüse aufweisen. Um der Pulverdüse das Kühlmittel zuzuführen kann das Optikmodul entsprechende Leitungen aufweisen. Vorzugsweise weist das Optikmodul mindestens einen Kühlmittelvorlauf und einen Kühlmittelrücklauf auf. Die Pulverdüse weist vorzugsweise mindestens zwei Kupplungen als lösbare Schnittstellen zwischen Kühlmittelvorlauf und Kühlmittelrücklauf des Optikmoduls und den Kühlmittelkanälen der Pulverdüse auf. Die Kupplungen können zum Beispiel als Schnellkupplungen ausgeführt sein, die mit entsprechenden Gegenstücken am Optikmodul verbunden werden können.

Durch das Vorsehen von Mitteln zum lösbaren Befestigen einer automatisch austauschbaren Pulverdüse kann ein automatischer Wechsel der Pulverdüse erfolgen. Diese kann dann wie ein Werkzeug eines Bearbeitungszentrums während des Fertigungs- beziehungsweise Bearbeitungsprozesses vollautomatisch ausgetauscht werden.

Der Strahlengang durch das Optikmodul ist vorzugsweise gasdicht verschlossen, so dass eine Sperrgasatmosphäre aufrechterhalten werden kann. Als Sperrgas können insbesondere inerte Gase wie zum Beispiel Stickstoff oder Argon verwendet werden. Wichtig ist vor allem, dass das Sperrgas frei von Partikeln ist, welche die Optikkomponenten verschmutzen können. Vorzugsweise ist das gesamte Gehäuse des Optikmoduls gasdicht verschlossen. Zum Aufbauen der Sperrgasatmosphäre im Gehäuse des Optikmoduls weist das Optikmodul vorzugsweise entsprechende Gaszuleitungen und/oder Mittel zum Anschließen von Zuführungen auf. Anstatt das Gehäuse gasdicht zu verschließen kann das Gehäuse auch derart aufgebaut sein, dass es möglich ist einen leichten Überdruck im Gehäuse durch Zuleiten des Sperrgases aufzubauen, so dass verhindert werden kann, dass Staub- oder Werkstoffpulverpartikel ins Innere des Optikmoduls gelangen.

Kurzbeschreibung der Figuren

Weitere vorteilhafte Ausgestaltungen werden nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels, auf welches die Erfindung jedoch nicht beschränkt ist, näher beschrieben.

Es zeigen schematisch:

Figur 1: eine Werkzeugmaschine mit einem Optikmodul zum Herstellen bzw. Bearbeiten eines Formkörpers bzw. Werkstücks mittels Laserstrahlung.

Figur 2: eine perspektivische Schnittansicht eines Ausführungsbeispiels eines

Optikmoduls.

Figur 3: eine weitere perspektivische Schnittansicht des in Fig. 2 gezeigten

Ausführungsbeispiels des Optikmoduls.

Figur 4: eine perspektivische Ansicht eines Ausführungsbeispiels einer Werkzeugmaschine zum Herstellen bzw. Bearbeiten eines Formkörpers bzw. Werkstücks mittels

Laserstrahlung.

Figur 5: eine perspektivische Ansicht eines Werkzeugwechslers für eine Werkzeugmaschine zum Herstellen bzw. Bearbeiten eines Formkörpers bzw. Werkstücks mittels

Laserstrahlung.

Figur 6: (A) eine teilgeschnittene perspektivische Ansicht und (B) eine perspektivische

Ansicht einer erfindungsgemäßen austauschbaren Pulverdüse.

Figur 7 Illustration des Wirkungsprinzips des Laserauftragsschweißens.

Figur 8 (A) eine perspektivische Ansicht eines austauschbaren Fokussiermoduls, (B) und

(C) jeweils Schnittansichten des austauschbaren Fokussiermoduls mit unterschiedlichen Brennweiten der Fokussieroptik.

Ausführliche Beschreibung der Erfindung anhand eines Ausführungsbeispiels

Bei der nachfolgenden Beschreibung einer bevorzugten Ausführungsform der vorliegenden Erfindung bezeichnen gleiche Bezugszeichen gleiche oder vergleichbare Komponenten.

Fig. 1 zeigt eine schematische Darstellung einer Maschine 1 zum Bearbeiten eines Werkstücks 30 und/oder zum Herstellen eines Formkörpers 30 durch ortsselektives Verfestigen von Werkstoffpulver zu zusammenhängenden Bereichen mittels Laserstrahlung. Die IVlaschine 1 weist einen Maschinenrahmen 21 auf, an dem mittelbar über dazwischenliegende Stellachsen 18, 19 einerseits ein Werkstücktisch 20 und andererseits ein Optikmodul 2 angebracht sind. Die Stellachsen 18, 19 können jeweils mehrere translatorische (X, Y, Z) oder rotatorische (φ, λ, θ) Achsen aufweisen, die nach Maßgabe einer Maschinensteuerung einstellbar sind.

Die Auslegung kann beispielsweise so sein, dass das Optikmodul 2 über ein, zwei oder drei translatorische Stellachsen 18 (X und/oder Y und/oder Z) am Maschinenrahmen 21 befestigt ist, während der Werkstücktisch 20 über eine, zwei oder drei rotatorische Stellachsen 19 am Maschinenrahmen 21 befestigt ist. Eine solche Laser-Werkzeugmaschine 1 weist in der Regel eine (nicht dargestellte) abgeschlossene Kabine auf, in der beispielsweise eine Schutzgasatmosphäre aufgebaut werden kann, und die den Arbeitsraum vor Verschmutzung abschirmt.

Auf dem Werkstücktisch 20 kann ein Werkstück 30 zum Bearbeiten lösbar befestigt werden. Alternativ kann auf dem Werkstücktisch 20 ein Formkörper 30 durch ortsselektives Verfestigen von Werkstoffpulver schichtweise aufgebaut werden.

Bei der Maschine 1 kann es sich beispielsweise um eine Fünf-Achsen-Laser-Werkzeugmaschine zum Herstellen von Formkörpern durch ortsselektives Verfestigen von Werkstoffpulver zu zusammenhängenden Bereichen mittels Laserstrahlung handeln. Das Optikmodul 2 ist hierbei lösbar an den Stellachsen 18 befestigt, so dass es bei Bedarf, zum Beispiel zur Wartung, schnell und einfach ausgetauscht werden kann. Bei einer solchen Fünf-Achsen-Laser-Werkzeugmaschine ist das Optikmodul 2 über drei translatorische Stellachsen 18 (X, Y und Z) am Maschinenrahmen 21 befestigt und der Werkstücktisch 20 ist über zwei Drehachsen am Maschinenrahmen angeordnet.

Eine beispielhafte Darstellung einer Fünf-Achsen-Laser-Werkzeugmaschine 1 zum Herstellen von Formkörpern durch ortsselektives Verfestigen von Werkstoffpulver zu zusammenhängenden Bereichen mittels Laserstrahlung ist in Fig. 4 gezeigt. Das dargestellte Ausführungsbeispiel entspricht im Wesentlichen der in Fig. 1 schematisch dargestellten Maschine 1. Der Werkstücktisch 20 und die Stellachsen 18 des Optikmoduls 2 sind in einer im Wesentlichen durch eine Prozessraumtür 23 verschließbaren Prozesskammer 22 angeordnet. Ein außerhalb der Prozesskammer 22 angeordnetes Display 24 dient als Schnittstelle zwischen Benutzer und Maschinensteuerung. Auf diesem Display 24 können beispielsweise Messwerte und/oder Warnmeldungen und/oder Steuerungsapplikationen dargestellt werden.

Die Werkzeugmaschine 1 umfasst einen Werkzeugwechsler 25, der mittels Stellachsen 25a, 25b seitlich in die Prozesskammer 22 hineingefahren werden kann. Eine Detailansicht des Werkzeugwechslers 25 ist in Fig. 5 dargestellt. Auf dem Werkzeugwechsler 25 kann eine Vielzahl von Fokussiermodulen 13 und eine Vielzahl von Pulverdüsen 15 angeordnet werden. Der in Fig. 5 dargestellte Werkzeugwechsler 25 weist drei Ablagepositionen für Pulverdüsen 15 mit unterschiedlicher axialer Länge auf.

Der Werkzeugwechsler 25 weist ferner eine Ablagefläche für mindestens zwei Fokussiermodule 13 mit Fokussieroptiken 14 unterschiedlicher Brennweite auf. Mittels zweier Stellachsen 25a, 25b können die Fokussiermodule 13 beziehungsweise die Pulverdüsen 15 in die Prozesskammer 22 bewegt werden, so dass sie am Optikmodul 2 befestigt werden können. Ein Verfahren zum Wechseln der Pulverdüsen 15 beziehungsweise der Fokussiermodule 13 wird weiter unten beschrieben.

Der Werkzeugwechsler 25 kann mittels der Stellachsen 25a, 25b in eine mittels einer verschiebbaren Trennwand von der Prozesskammer 22 trennbare Werkzeugkammer verfahren werden. In der Werkzeugkammer sind die Fokussiermodule 13 und die Pulverdüsen 15 vor

Verschmutzung beispielsweise durch Werkstoffpulver oder durch Schweißrauch geschützt, wenn eine Bearbeitung des Werkstücks in der Prozesskammer 22 durchgeführt wird.

In Fig. 2 ist ein Ausführungsbeispiel eines Optikmoduls 2 dargestellt, das auf einer Stellachse 18 lösbar montiert ist. Die Stellachse 18 ist beispielsweise eine in Z-Richtung verfahrbare Translationsachse, die auf zwei weiteren in X- und Y-Richtung verfahrbaren Translationsachsen angeordnet sein kann, so dass das Optikmodul 2 in allen drei Raumrichtungen verfahrbar ist. Das Optikmodul 2 ist insbesondere so an der Stellachse 18 montiert, dass der Laserstrahl senkrecht nach unten (parallel zur Richtung der Gravitation beziehungsweise in Z-Richtung) aus dem Optikmodul 2 austritt. Durch Verfahren der Stellachsen 18 kann somit ein Fokus des fokussierten Laserstrahls in drei Dimensionen im Raum verfahren werden, um ein Werkstück zu bearbeiten beziehungsweise um einen Formkörper schichtweise aufzubauen. Somit kann ein Formkörper wie bei einem 3D-Drucker durch Verschmelzen von Werkstoff pulver schichtweise aufgebaut werden.

Das Optikmodul 2 weist ein Gehäuse 8 auf, in dem eine Vielzahl von Optikkomponenten angeordnet ist. Das Gehäuse 8 dient einerseits als mechanische Plattform zum Anordnen der Optikkomponenten sowie zum Schützen der Optikkomponenten vor mechanischen Einflüssen. Im Gehäuse 8 kann eine Schutzgasatmosphäre aufgebaut werden. Durch einen Überdruck kann zum Beispiel das Eindringen von Partikeln und Dreck in das Gehäuse verhindert werden.

An einem oberen Bereich des Gehäuses 8 ist ein Faserkoppler 10 angeordnet, über den ein Laserstrahl aus einer optischen Faser eingekoppelt werden kann. Durch Verwenden einer optischen Faser kann Laserlicht von einer Laserstrahlquelle zuverlässig zum Optikmodul 2 geleitet werden. Die flexible optische Faser ermöglicht es das Optikmodul 2, und somit den Laserstrahl zu bewegen, ohne die Laserstrahlquelle selbst bewegen zu müssen. Ferner kann eine optische Faser einen Laserstrahl mit einem besonders gleichmäßigen Strahlprofil liefern.

Als Laserstrahlquelle kann beispielsweise ein Hochleistungs-Festkörperlaser verwendet werden. Hierzu gehören beispielsweise dotierte YAG-Laser. Insbesondere kann ein mit Ytterbium dotierter YAG-Scheibenlaser mit einer Wellenlänge von 1030 nm als Laserstrahlquelle dienen. Alternativ hierzu kann ein fasergeführter Diodenlaser mit einer Wellenlänge von 1020 nm als Strahlquelle verwendet werden. Diodenlaser können Laserstrahlen mit einer Leistung von einigen Watt bis zu mehreren Tausend Watt bereitstellen. Somit kann ausreichend Laserleistung für verschiedene Bearbeitungs- und Fertigungsprozesse bereitgestellt werden.

Direkt unterhalb des Faserkopplers 10 ist ein Kollirmationsoptikwechsler 3 im Gehäuse 8 des Optikmoduls 2 angeordnet. Eine Kollimationsoptik 4 mit einer ersten Brennweite von beispielsweise 80 mm ist derart im Kollimationsoptikwechsler 3 angeordnet, dass der aus der

Faser austretende Laserstrahl auf einen Durchmesser von circa 36 mm kollimiert wird. Der Kollimationsoptikwechsler 3 kann weitere Kollimationsoptiken 4 mit Brennweiten von beispielsweise 50 mm, 60 mm und/oder 100 mm oder mehr aufweisen. Hiermit können kollimierte Laserstrahlen mit Durchmessern zwischen ca. 10 mm und 100 mm bereitgestellt werden. Als Kollimationsoptiken 4 können zum Beispiel geeignete Arten von Sammellinsen verwendet werden. Eine Kollimationsoptik 4 kann aus einer einzelnen Linse bestehen oder eine Vielzahl von Linsen umfassen. Material, Beschichtung und weitere Linseneigenschaften können in Abhängigkeit der verwendeten Laserwellenlänge und Laserleistung gewählt werden.

Der kollimierte Laserstrahl wird von zwei im Optikmodul 2 angeordneten Umlenkspiegeln 6, 7 auf eine Fokussieroptik 14 gerichtet, die den Laserstrahl fokussiert. Die Position beziehungsweise die Orientierung der Umlenkspiegel 6, 7 ist vorzugsweise jeweils einstellbar, so dass eine Justierung des Strahlengangs des Laserstrahls automatisch oder manuell vorgenommen werden kann. Die korrekte Justierung des Laserstrahls kann beispielsweise von der Kamera 9 überwacht werden. Insbesondere können die Umlenkspiegel 6, 7 gesteuert durch die Maschinensteuerung einstellbar sein. Hierzu können die Umlenkspiegel 6, 7 jeweils auf verstellbaren Haltern angeordnet sein, die mittels Steuersignalen über die Maschinensteuerung gesteuert werden können. Das Optikmodul 2 kann geeignete Schnittstellen aufweisen, um Signalleitungen für die Maschinensteuerung lösbar anzuschließen.

Die Brennweite der Fokussieroptik 14 kann beispielsweise zwischen 50 mm und 500 mm betragen. Die Fokussieroptik 14 ist vorzugsweise in einem automatisch wechselbaren Fokussiermodul 13 angeordnet, das über einen Befestigungsmechanismus 11, 16 am Optikmodul 2 befestigt werden kann. Somit kann durch Wechseln des Fokussiermoduls 13 auch die Brennweite der Fokussieroptik 14 vollautomatisch geändert werden.

Sieben beispielhafte Kombinationen von Brennweiten der Kollimationsoptik 4 und der Fokussieroptik 14 sind in der untenstehenden Tabelle 1 dargestellt. Tabelle 1 listet beispielhaft auch resultierende Werte der Durchmesser des kollimierten Laserstrahls und des fokussierten Laserstrahls für einen Faserkerndurchmesser von 600 μιτι auf.

Je kleiner der Strahldurchmesser, desto höher ist die Laserintensität. Insbesondere können mit einem kleineren Strahldurchmesser am Brennpunkt des Laserstrahls kleinere Strukturen hergestellt werden. Ein kleinerer Strahldurchmesser im Brennpunkt kann bei gleicher Brennweite der Fokussieroptik durch einen größeren Strahldurchmesser des kollimierten Laserstrahls vor der Fokussieroptik erreicht werden. Ein größerer Strahldurchmesser des kollimierten Laserstrahls hat den Vorteil, dass die Optikelemente im Optikmodul 2 einer geringeren Laserintensität ausgesetzt sind. Somit werden die Optikelemente mit geringerer Wahrscheinlichkeit beschädigt, da sie zum Beispiel weniger erwärmt werden.

Tabelle 1: Sieben beispielhafte Kombinationen aus Kollimationsoptikbrennweite und

Fokussieroptikbrennweite:

Eine beispielhafte Ausgestaltung des Fokussiermoduls 13 ist in Fig. 8A bis C dargestellt. Fig. 8A zeigt eine perspektivische Ansicht eines Fokussiermoduls 13 mit einem im Wesentlichen zylindrischen Trägergehäuse, das vorzugsweise aus einem Metall mit möglichst kleinem Wärmeausdehnungskoeffizient gefertigt ist. Entsprechend den Beispielen der Tabelle 1 zeigt Fig. 8B ein Fokussiermodul 13 mit einer Fokussieroptik 14, die eine Brennweite von 200 mm aufweist, und Fig. 8C ein Fokussiermodul 13 mit einer Fokussieroptik 14, die eine Brennweite von 300 mm aufweist. Die Fokussieroptiken 14 der unterschiedlichen Brennweiten sind so in den verschiedenen Fokussiermodulen 13 angeordnet, dass sich der resultierende Brennpunkt des Lasers stets am selben Ort befindet.

An einem oberen Rand des Fokussiermoduls 13 sind Befestigungsmittel, zum Beispiel zwei Spannbolzen 16 angeordnet. Die Befestigungsmittel 16 dienen auch dazu, eine möglichst hohe Positioniergenauigkeit von weniger als 1 mm sicherzustellen. Dies ist insbesondere auch für die genaue Strahlführung des Laserstrahls durch die Pulverdüse sowie an den korrekten Arbeitspunkt wichtig. Sollten dennoch Abweichungen auftreten, kann dies von der Kamera 9 detektiert und durch die Umlenkspiegel 6, 7 korrigiert werden. Das Fokussiermodul 13 weist mindestens ein Schutzglas 14a zum Schützen der Fokussieroptik 14 vor Verschmutzung oder Beschädigung auf. Vorzugsweise ist wie in den Schnittzeichnungen der Fig. 8B und C dargestellt auf beiden Seiten der Fokussieroptik 14 jeweils ein Schutzglas 14a im Fokussiermodul 13 angeordnet, um die Fokussieroptik 14 von beiden Seiten vor Verschmutzung oder mechanischer Einwirkung zu schützen.

Die Temperatur des mindestens einen Schutzglases 14a kann jeweils durch einen Messfühler 13a überwacht werden. In Fig. 8B und C wird nur die Temperatur des oberen Schutzglas 14a, das zuerst vom Laserstrahl getroffen wird, durch einen Messfühler 13a überwacht dargestellt. Als Messfühler kann beispielsweise ein temperaturabhängiger Widerstand (NTC-Widerstand) beziehungsweise ein Thermoelement verwendet werden. Das Thermoelement kann insbesondere ein Draht aus einer Platinlegierung sein. In ähnlicher Weise kann auch die Temperatur anderer optischer Komponenten im Optikmodul 2, insbesondere der Kollimationsoptiken 4, der Schutzgläser der Kollimationsoptiken 4, der Umlenkspiegel 6, 7 und/oder der Fokussieroptik 14 überwacht werden.

Ein vom Temperatur-Messfühler 14a erzeugtes analoges Messsignal wird über Schnittstellen 13b am Fokussiermodul 13 an Signalleitungen im Optikmodul 2 weitergeleitet. Von dort wird das Messsignal an eine Maschinensteuerung ausgegeben und in einen Temperaturwert umgerechnet, so dass die Temperatur einer optischen Komponente des Optikmoduls 2 in Grad Celsius ausgegeben werden kann. Die gemessenen Temperaturwerte können beispielsweise auf dem Display 24 angezeigt werden. In der Maschinensteuerung kann für jede Optikkomponente ein Schwellenwert der Temperatur hinterlegt sein. Übersteigt die gemessene Temperatur einer optischen Komponente den hinterlegten Schwellenwert, so kann ein Warnsignal erzeugt werden. Das Warnsignal kann beispielsweise als Warnung an einen Benutzer ausgegeben werden. Die Warnung kann zum Beispiel auf dem Display 24 oder mittels einer Warnleuchte optisch dargestellt werden. Zusätzlich oder alternativ kann eine Abschaltung des Lasers veranlasst werden, um eine Beschädigung der optischen Komponente zu vermeiden.

Die Schnittstellen 13b können auch dazu dienen, der Maschinensteuerung ein erfolgreiches Befestigen eines Fokussiermoduls 13 zu signalisieren. Entsprechend kann die Maschinensteuerung detektieren, dass das Fokussiermodul 13 erfolgreich gelöst und abgelegt wurde, wenn ein über die Schnittstellen 13b übertragenes Signal unterbrochen wird.

Unter das am Optikmodul 2 befestigbare Fokussiermodul 13 kann die erfindungsgemäße austauschbare Pulverdüse 15 befestigt werden. Eine beispielhafte Ausgestaltung der Pulverdüse 15 ist in Fig. 6A und 6B dargestellt. Die Pulverdüse 15 weist wie das Fokussiermodul 13 Befestigungsmittel 16 auf, die mittels entsprechender Aufnahmen 12 am Optikmodul 2 befestigt werden können. Als Befestigungsmittel 16 können beispielsweise mehrere Spannbolzen an der Pulverdüse 15 angeordnet sein. Solche Spannbolzen werden in ähnlicher Art und Weise auch zum Befestigen von Werkzeugen in herkömmlichen Werkzeugmaschinen verwendet. Die Aufnahmen 12 am Optikmodul 2 können diese Spannbolzen zum Befestigen der Pulverdüse 15 über einen hydraulischen, pneumatischen, elektromagnetischen oder über eine Feder gespannten Mechanismus einspannen, so dass die Pulverdüse 15 lösbar am Optikmodul 2 befestigt wird, wobei innerhalb einer festgelegten Toleranz immer dieselbe Position der Pulverdüse 15 erreicht werden kann.

Die in Fig. 2 und Fig. 6 dargestellte Pulverdüse 15 weist am oberen dem Optikmodul 2 zugewandtem Ende einen Flansch 15a auf, an dem die Befestigungsmittel 16, beispielsweise zwei Spannbolzen, angeordnet sind. Am Flansch 15a ist ein im Wesentlichen zylindrischer mittlerer Abschnitt der Pulverdüse 15 angeordnet. Am unteren Ende des mittleren Abschnitts ist eine im Wesentlichen kegelförmige Pulverdüsenspitze 15b angeordnet. Der mittlere Abschnitt der Pulverdüse 15 kann zusammen mit dem Flansch 15a in vorteilhafter Weise als Träger mit Zuführungen für Kühlmittel und Werkstoffpulver dienen, an dem die Pulverdüsenspitze 15b lösbar befestigt werden kann. Somit kann ein Wechsel der Pulverdüsenspitze 15b ermöglicht werden.

Am Flansch 15a der Pulverdüse 15 sind Anschlüsse 15f, 15g beziehungsweise Schnittstellen zum Zuführen eines Kühlmittels beziehungsweise eines Werkstoffpulvers angeordnet. Die Anschlüsse 15f für das Kühlmittel können beispielsweise als Schnellkupplungen ausgeführt sein, die sich beim Befestigen der Pulverdüse 15 am Optikmodul 2 automatisch mit entsprechenden Leitungen am Optikmodul 2 verbinden. Die Einlasse 15g für das Werkstoffpulver können als einfache Öffnungen ausgebildet sein, die einen Dichtungsring aufweisen. Beim Befestigen der Pulverdüse 15 am Optikmodul 2 werden die Einlasse mit den Dichtungsringen derart an entsprechende Auslässe am Optikmodul gepresst, dass eine gasdichte Verbindung entsteht.

Die Einlasse 15g für Werkstoffpulver stehen jeweils mit Kanälen 15d für das Werkstoffpulver, die durch die Pulverdüse 15 zur Spitze 15b der Pulverdüse 15 verlaufen in Strömungsverbindung. In der Spitze 15b der Pulverdüse 15 ist ein Ringspalt 15c ausgebildet, dessen Spaltweite sich in Strömungsrichtung verjüngen kann, um eine Düsenwirkung zu erzielen. Der Übergang zwischen Werkstoffpulverkanälen 15d und Ringspalt 15c ist derart geformt, dass eine umfänglich gleichmäßige Verteilung des Werkstoff pulvers hergestellt wird. Es kann beispielsweise eine Vielzahl von Löchern in einem Übergang von den Werkstoffpulverkanälen 15d zum Ringspalt 15c vorgesehen sein. Die Löcher können eine gleichmäßige Verteilung des Werkstoff pulvers P im Ringspalt 15c bewirken. Der Strom des Werkstoffpulvers P kann die Form eines koaxial zum Brennpunkt des Laserstrahls ausgerichteten Kegels aufweisen, wie durch die Illustration der Fig. 7 angedeutet.

Die Pulverdüsenspitze 15b kann lösbar an der Pulverdüse 15 befestigt sein, so dass sie zum Beispiel bei Beschädigung oder Verformung durch Hitze ausgetauscht werden kann. Bei einem mehrteiligen Aufbau der Pulverdüse 15 kann die Pulverdüsenspitze 15b zudem aus einem anderen, hitzebeständigeren und/oder härteren Material als der Rest der Pulverdüse 15 gefertigt sein. Verschieden dimensionierte Pulverdüsenspitzen 15b können zum Beispiel für verschiedene Laserstrahldurchmesser verwendet werden. Ferner können unterschiedlich dimensionierte Ringspalte 15c mit verschiedenen Öffnungsweiten in austauschbaren Pulverdüsenspitzen 15b ausgebildet sein. Entsprechend können auch verschiede Pulverdüsen 15 mit unterschiedlich

dimensionierten Pulverdüsenspitzen 15b in der Maschine 1 vorgehalten werden, so dass bei Bedarf die gesamte Pulverdüse 15 ausgetauscht werden kann. Der Durchmesser der unteren dem Werkstück zugewandten Öffnung der Pulverdüsenspitze 15b kann beispielsweise 1 mm, 2 mm, 3 mm, 4 mm oder 5 bis 8 mm betragen. Der Austausch der Pulverdüsenspitzen 15b erfolgt vorzugsweise manuell, während der Wechsel der gesamten Pulverdüse 15 wie weiter unten beschrieben vollautomatisch erfolgen kann.

Die Pulverdüse 15 weist mindestens zwei Kupplungen 15f für Kühlmittel auf, die vorzugsweise als Schnellkupplungen ausgeführt sind. Eine Kupplung 15f dient als Anschluss für den Vorlauf des Kühlmittels vom Optikmodul 2, die andere Kupplung 15f dient als Anschluss für den Rücklauf des Kühlmittels zum Optikmodul 2. Die Anschlüsse 15f für Kühlmittel stehen in Strömungsverbindung mit Kühlmittelkanälen 15e in der Pulverdüse 15, die in der teilgeschnittenen Ansicht der Fig. 6A illustriert sind. Die Kühlmittelkanäle 15e können beispielsweise ringförmig, spiralförmig oder schraubenförmig um die Laserstrahl Öffnung angeordnet sein, um eine gleichmäßige Kühlung der Pulverdüse 15 zu gewährleisten.

Im Inneren des Flansches 15a ist eine im Wesentlichen zylindrische Aussparung für das Fokussiermodul 13 ausgeformt. Wenn das Fokussiermodul 13 und die Pulverdüse 15 am Optikmodul 2 befestigt sind, befindet sich das untere Ende des Fokussiermoduls 13 innerhalb der Aussparung in der Pulverdüse 15. Dabei sind das Fokussiermodul 13 und die Pulverdüse 15 koaxial zueinander und zum Laserstrahl am Optikmodul 2 angeordnet.

Die Pulverdüse 15 weist aufgrund der Vielzahl von Kanälen für Kühlmittel 15e und Kanälen für Werkstoff pulver 15d, sowie mit ihrer sich in axialer Richtung zum Laserbrennpunkt verjüngenden axialen Öffnung eine sehr komplexe Form auf. Solch eine komplexe Form kann beispielsweise durch ein Laserauftragsschweißverfahren in einer erfindungsgemäßen Maschine 1 hergestellt werden. Um den Herstellungsprozess der Pulverdüse 15 durch Laserauftragsschweißen in möglichst wenig Zeit und unter möglichst hoher Einsparung von Material durchführen zu können, kann beispielsweise der im Wesentlichen zylindrische mittige Abschnitt der Pulverdüse 15 mit möglichst dünner Wandstärke aufgebaut werden. Um die mechanische Festigkeit der Pulverdüse 15 zu erhöhen, kann die Wand durch Lamellen 151 verstärkt sein. In ähnlicher Weise kann der Übergang zwischen Flansch 15a und mittlerem Abschnitt der Pulverdüse 15 materialsparend gefertigt werden, indem zum Beispiel eine wie in Fig. 6B dargestellte Wabenstruktur 15w verwendet wird, die bei niedrigem Materialverbrauch eine hohe mechanische Festigkeit bietet.

Der Flansch 15a und der mittlere Abschnitt der Pulverdüse 15 können beispielsweise aus Aluminium oder aus Stahl gefertigt sein. Der Durchmesser des Flansches 15a kann ungefähr 150 mm bis 170 mm, vorzugsweise 160 mm betragen. Die gesamte Länge der Pulverdüse 15

kann ungefähr 125 mm bis 145 mm, vorzugsweise 135 mm betragen. Bei Verwendung von Fokussieroptiken 14 mit kürzeren Brennweiten können auch entsprechend kürzere Pulverdüsen mit weniger als 125 mm, beispielsweise 100 mm bis 90 mm Länge verwendet werden. Werden Fokussieroptiken 14 mit höheren Brennweiten verwendet, können auch entsprechend längere Pulverdüsen mit mehr als 145 mm, beispielsweise 150 mm bis 200 mm oder sogar 300 mm Länge verwendet werden. Der Durchmesser des mittleren Abschnitts der Pulverdüse kann ungefähr 60 mm bis 70 mm, vorzugsweise 65 bis 67 mm betragen. Vorzugsweise kann die Pulverdüse 15 auch noch kompakter gestaltet sein, um die Gefahr von Kollisionen mit dem Werkstück 30 zu verringern.

Das Austauschen der Pulverdüse 15 kann beispielsweise wie im Folgenden beschrieben erfolgen. Die Trennwand zwischen der Prozesskammer 22 und der seitlich davon angeordneten Werkzeugkammer wird aufgeschoben. Mittels der Stellachse 25b wird der untere Teil des Werkzeugwechslers 25 mit den Pulverdüsen 15 in die Prozesskammer 22 gefahren. Die Stellachsen 18 bewegen das Optikmodul 2 an die Position, an der sich Werkzeugwechsler 25 mit der Vielzahl von Pulverdüsen 15 befindet. Zum Ablegen einer am Optikmodul 2 befestigten Pulverdüse 15 muss anders als in Fig. 4 und Fig. 5 dargestellt eine Ablageposition des Werkzeugwechslers 25 frei sein. Durch Öffnen der Aufnahmen 12 am Optikmodul 2 werden die Befestigungsmittel 16 der Pulverdüse 15 freigegeben, so dass die Pulverdüse 15 vom Optikmodul 2 gelöst wird und an einer freien Ablageposition des Werkzeugwechslers 25 abgelegt werden kann.

Anschließend wird das Optikmodul 2 zu einer anderen Position des Werkzeugwechslers 25 verfahren, an der sich eine weitere Pulverdüse 15, die eine in axialer Richtung größere oder kleinere Abmessung aufweist, befindet. Das Optikmodul 2 wird dann mittels der Stellachsen 18 bewegt, so dass die Befestigungsmittel 16 der weiteren Pulverdüse 15 in die Aufnahmen 12 am Optikmodul 2 eingreifen. Durch Schließen der Aufnahmen 12 kann die Pulverdüse 15 am Optikmodul 2 befestigt und vom Werkzeugwechsler 25 herausgenommen werden.

Das automatische Wechseln der Pulverdüse 15 kann insbesondere dann erfolgen, wenn durch einen Wechsel der Fokussieroptik 14 die Brennweite des Laserstrahls verändert wird. Da die Pulverdüse 15 das Werkstoffpulver an den Ort des Brennpunkts des Laserstrahls leiten soll, muss die axiale Länge der Pulverdüse 15 entsprechend der Brennweite des Laserstrahls gewählt werden. Wie in Tabelle 1 aufgelistet kann die Brennweite der Fokussieroptik 14 beispielsweise 200 mm oder 300 mm betragen. Entsprechend können im Werkzeugwechsler 25 der Maschine 1 entsprechende Pulverdüsen 15 vorgehalten werden, die Werkstoffpulver an einen beispielsweise 200 mm oder 300 mm von der Fokussieroptik 14 entfernten Brennpunkt leiten.

Über die Pulverdüse 15 kann ein Werkstoff pulver am Arbeitspunkt der Maschine 1, also in unmittelbarer Nähe des Brennpunkts des Laserstrahls, bereitgestellt werden. Hierzu weist die Pulverdüse 15 einen Kanal oder mehrere Kanäle auf, über die das Werkstoff pulver geleitet wird. Beim Befestigen der Pulverdüse 15 am Optikmodul 2 wird eine Verbindung der Kanäle für das Werkstoffpulver mit entsprechenden Leitungen im Optikmodul 2 hergestellt. Zum Verbinden der Kanäle und der Leitungen weisen die Pulverdüse 15 beziehungsweise das Optikmodul 2 jeweils geeignete Schnittstellen auf. Ferner weist die Pulverdüse 15 einen Kühlkanal oder mehrere Kühlkanäle auf, in denen ein fluides Kühlmittel, insbesondere Wasser, zum Kühlen der Pulverdüse 15 zirkulieren kann. Das Optikmodul 2 weist entsprechende Leitungen zum Zuführen und zum Abführen des Kühlmittels sowie Schnittstellen zum Verbinden der Leitungen mit den Kühlkanälen der Pulverdüse 15 auf.

Ferner kann die Pulverdüse 15 ein Schutzgas an den Arbeitspunkt der Maschine 1 leiten, so dass beim Schmelzen des Werkstoffpulvers im Brennpunkt des Laserstrahls unerwünschte Reaktionen weitestgehend unterdrückt werden können. Das Schutzgas dient insbesondere dazu, Sauerstoff aus der Luft zu verdrängen. Als Schutzgas können insbesondere inerte Gase wie beispielsweise Argon verwendet werden. Zum Zuführen des Schutzgases weist das Optikmodul 2 entsprechende Leitungen auf. Das Schutzgas kann auch zusammen mit dem Werkstoff pulver als Trägergas zugeführt werden. Somit dient das Schutzgas einerseits zum Verhindern einer Reaktion mit Luftsauerstoff und andererseits zum Fördern des Werkstoffpulvers.

Beim automatischen Austauschen der Pulverdüse 15 werden die Kühlleitungen des Optikmoduls 2 mit den Kühlkanälen der Pulverdüse 15 automatisch über die entsprechenden Schnittstellen verbunden beziehungsweise getrennt. Entsprechend werden auch die Leitungen für Werkstoffpulver im Optikmodul 2 mit den Werkstoffpulverkanälen in der Pulverdüse 15 automatisch über die entsprechenden Schnittstellen verbunden beziehungsweise getrennt. Die entsprechenden Schnittstellen für die Leitungen und Kanäle können hierzu lösbar ausführt sein und zum Beispiel jeweils über eine Hydraulik oder Pneumatik angesteuert werden.

Ein automatischer Wechsel des Fokussiermoduls 13 kann in ähnlicher Weise erfolgen wie der automatische Wechsel der Pulverdüse 15. Hierbei wird mittels der Stellachse 25a auch der obere Teil des Werkzeugwechslers 25 mit den Fokussiermodulen 13 in die Prozesskammer 22 gefahren. Zum Wechseln des Fokussiermoduls 13 muss jedoch zunächst eine am Optikmodul 2 befestigte Pulverdüse 15 gelöst werden. Dies erfolgt wie oben beschrieben, indem die Pulverdüse 15 an einer freien Ablageposition des Werkzeugwechslers 25 abgelegt wird. Die Stellachsen 18 bewegen dann das Optikmodul 2 an eine Position, an der sich der Werkzeugwechsler 25 mit der Vielzahl von Fokussiermodulen 13 befindet. Das am Optikmodul 2 befestigte Fokussiermodul 13 kann durch Öffnen der Aufnahmen 11 am Optikmodul 2 freigegeben werden, so dass das Fokussiermodul 13

vom Optikmodul 2 gelöst und an einer freien Ablageposition des Werkzeugwechslers 25 abgelegt werden kann. Im Folgenden kann ein anderes Fokussiermodul 13 am Optikmodul 2 befestigt werden. Hierzu wird das Optikmodul 2 derart verfahren, so dass die Befestigungsmittel 16 des Fokussiermoduls 13 in die Aufnahmen 11 am Optikmodul 2 eingreifen. Die Aufnahmen 11 am Optikmodul 2 können nun die Befestigungsmittel 16 zum Beispiel über einen hydraulischen, pneumatischen oder über eine Feder gespannten Mechanismus einspannen, um das Fokussiermodul 13 am Optikmodul 2 zu befestigen. Anschließend kann der Werkzeugwechsler 25 zurück in die abtrennbare Werkzeugkammer verschoben und die Bearbeitung des Werkstücks gestartet beziehungsweise fortgesetzt werden.

Die benötigten Verfahrwege der Stellachsen 18, 25a, 25b können in einem Speicher der Maschinensteuerung hinterlegt sein, so dass das Wechseln des Fokussiermoduls 13 beziehungsweise der Pulverdüse 15 vollautomatisch ausgeführt werden kann. Der Wechsel des Fokussiermoduls 13 beziehungsweise der Pulverdüse 15 kann somit auch in einen Bearbeitungsprozess integriert werden. Abhängig von der gewünschten Größe der zu fertigenden Strukturen des Werkstücks 30 beziehungsweise des Formkörpers 30 wird ein geeigneter Durchmesser des Laserstrahls im Brennpunkt gewählt. Je kleiner der Durchmesser des Laserstrahls am Brennpunkt ist, desto kleinere Strukturen können gefertigt werden. Den Durchmesser des Laserstrahls bestimmt wie in Tabelle 1 gezeigt die Brennweite der Fokussieroptik 14 sowie der Kollimationsoptik 3. Für jeden Bearbeitungsvorgang kann somit eine geeignete Kombination aus Kollimationsoptik 4 und Fokussieroptik 14 gewählt werden. In Abhängigkeit der gewählten Kollimationsoptik 4 und Fokussieroptik 14 wird wiederum eine geeignete Pulverdüse 15 gewählt und am Optikmodul 2 befestigt. Einerseits muss die Öffnung der Pulverdüsenspitze 15b groß genug sein, so dass der Laserstrahl L ungehindert passieren kann. Andererseits soll die Öffnung der Pulverdüsenspitze 15b klein genug sein, um einen günstigen und gleichmäßigen Fluss des Werkstoffpulvers P durch den Ringspalt 15c zum Brennpunkt des Laserstrahls L zu bewirken. Entsprechend der gewählten Strukturgröße wird dementsprechend eine geeignete Kollimationsoptik 4 am Kollimationsoptikwechsler 3 eingestellt sowie ein geeignetes Fokussiermodul 13 und eine entsprechende Pulverdüse 15 am Optikmodul 2 befestigt.

Der erste Umlenkspiegel 6 weist Mittel zum Kühlen und Überwachen der Temperatur des Spiegels 6 auf. Der zweite Umlenkspiegel 7 ist ein dichroitischer Spiegel, der ebenfalls Mittel zum Kühlen und Überwachen der Temperatur des Spiegels 7 aufweist. Für die Wellenlänge des Laserstrahls, die beispielsweise im infraroten Spektralbereich liegt, ist der dichroitische Spiegel 7 reflektierend. Für sichtbares Licht hingegen kann der dichroitische Spiegel durchlässig sein. Hinter dem dichroitischen Spiegel 7 kann eine Kamera 9 zum Überwachen des Fertigungsprozesses angeordnet sein. Die Kamera 9 ist mit Blickrichtung entlang des Laserstrahls durch den dichroitischen Spiegel und durch die Fokussieroptik 14 auf den Brennpunkt des Laserstrahls

angeordnet. Somit kann mit der Kamera 9 der Arbeitspunkt auf dem Werkstück beziehungsweise dem zu fertigenden Formkörper überwacht werden. Ferner kann durch Überwachung des Laserstrahls mittels der Kamera 9 verhindert werden, dass der Laserstrahl direkt auf die Pulverdüse 15 trifft und diese stark erhitzt oder beschädigt.

Das Wirkprinzip des Laserauftragsschweißens wird anhand der Fig. 7 illustriert. Fig. 7 zeigt die Spitze 30 einer Pulverdüse 15 in der Nähe eines zu bearbeitenden Werkstücks W. Ein fokussierter Laserstrahl L verläuft koaxial zur Pulverdüse 15 und ist auf einen Arbeitspunkt auf dem Werkstück W fokussiert. Das Werkstoff pulver P wird koaxial zum Laserstrahl L durch die Pulverdüse 15 zum Brennpunkt des Laserstrahls L am Werkstück W geleitet. Ein Schutz- beziehungsweise Trägergas G strömt ebenfalls durch die Pulverdüse 15 und transportiert dabei das Werkstoffpulver P. Das Schutzgas G, beispielsweise Argon, dient außerdem dazu, unerwünschte Reaktionen des erhitzten Werkstoff pulvers P oder des Werkstücks W mit Luftsauerstoff zu unterbinden.

Die in der vorstehenden Beschreibung, den Ansprüchen und den Zeichnungen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein.

Bezugszeichenliste

1 Laser-Werkzeugmaschine

2 Optikmodul

3 Kollimationsoptikwechsler

4 Kollimationsoptik

6 erster Umlenkspiegel

7 zweiter Umlenkspiegel (dichroitischer Spiegel)

8 Gehäuse

9 Kamera

10 Faserkoppler

11 Schnittstelle für Fokussieroptik

12 Schnittstelle für Pulverdüse

13 Fokussiermodul

13a Thermoelement

13b Schnittstelle des Thermoelements

14 Fokussieroptik

14a Schutzglas

15 Pulverdüse

15a Pulverdüsenflansch

15 b Pulverdüsenspitze

15c Ringspalt

15d Werkstoff pulverkanal

15e Kühlkanal

15f Kühlmittelkupplung

15g Werkstoffpulvereinlass

151 Lamellen

15w Wabenstruktur

16 Spannbolzen

17 Strahlengang des Lasers

18 Stellachsen des Werkzeugs

19 Stellachsen des Werkstücktisches

20 Werkstücktisch

21 Maschinenrahmen

22 Prozesskammer

23 Prozessraumtür

24 Display

25 Werkzeugwechsler

25a Stellachse des Fokussieroptikwechslers

25b Stellachse des Pulverdüsenwechslers

30 Werkstück

L Laserstrahl

W Werkstück

P Werkstückpulver

G Schutzgas und/oder Trägergas