Processing

Please wait...

Settings

Settings

Goto Application

1. WO2019044545 - BRAZING SHEET FOR HEAT EXCHANGER FIN AND MANUFACTURING METHOD THEREOF

Document

明 細 書

発明の名称 熱交換器フィン用ブレージングシート及びその製造方法

技術分野

0001  

背景技術

0002   0003   0004  

先行技術文献

特許文献

0005  

発明の概要

発明が解決しようとする課題

0006   0007   0008   0009   0010   0011  

課題を解決するための手段

0012   0013  

発明の効果

0014   0015   0016   0017   0018   0019   0020  

図面の簡単な説明

0021  

発明を実施するための形態

0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083  

実施例

0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114  

請求の範囲

1   2   3   4   5   6   7   8  

図面

1   2  

明 細 書

発明の名称 : 熱交換器フィン用ブレージングシート及びその製造方法

技術分野

[0001]
 本発明は、熱交換器のフィンに用いられるブレージングシート及びその製造方法に関する。

背景技術

[0002]
 自動車や空気調和機に搭載される熱交換器は、冷媒を流通させる複数の管と、管に接合された複数のフィンとを有している。熱交換器の管及びフィンは、アルミニウム材(アルミニウム及びアルミニウム合金を含む。以下同じ。)から構成されていることがある。この種の熱交換器としては、冷媒流路の外部に配置されたアウターフィンを有する熱交換器や、冷媒流路内に配置されたインナーフィンを有する熱交換器がある。また、アウターフィンを備えた熱交換器としては、例えば、扁平管とコルゲートフィンとが交互に積層されてなるコアを有する、いわゆるコルゲートフィン型熱交換器や、複数の管または扁平管がプレートフィンと交差している、いわゆるプレートフィン型熱交換器などが知られている。
[0003]
 熱交換器は、例えば、以下のようにして作製されている。まず、心材の片面または両面にろう材が積層されてなるブレージングシートを準備し、このブレージングシートを所望するフィンの形状に成形する。そして、このブレージングシートと別途準備した管とを組み合わせて組立体を作製する。この組立体を600℃程度の温度に加熱してろう材を溶融させることにより、心材からなるフィンを管にろう付し、熱交換器を得ることができる。
[0004]
 この種のブレージングシートとして、特許文献1には、Mn(マンガン):0.5質量%以上2.0質量%以下、Si(ケイ素):0.2質量%以上1.3質量%以下、Fe(鉄):0.05質量%以上0.5質量%以下、Cu(銅):0.3質量%以上1.5質量%以下を含有し、残部がAl(アルミニウム)及び不可避不純物からなる化学成分を備えた心材を有するブレージングシートが記載されている。また、特許文献2には、Si:0.01~0.90質量%、Fe:0.05~2.00質量%、Mn:0.5~2.0質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を備えた心材を有するブレージングシートが記載されている。

先行技術文献

特許文献

[0005]
特許文献1 : 特許第5841719号
特許文献2 : 特開2017-66494号公報

発明の概要

発明が解決しようとする課題

[0006]
 前述したようにブレージングシートの心材を熱交換器のフィンにする場合、ろう付中にブレージングシートが座屈すると、フィンの形状が損なわれ、熱交換効率の低下を招くおそれがある。かかる問題を回避するため、熱交換器フィン用のブレージングシートには、高い耐高温座屈性が求められている。
[0007]
 例えば特許文献1のブレージングシートは、Cuの含有量を0.30質量%以上とすることにより、心材の強度を向上させて耐高温座屈性を高めている。しかし、Cuの含有量を0.30質量%以上とすることにより、ろう付後における心材の自己耐食性の低下を招いている。
[0008]
 また、例えばアウターフィンを備えた熱交換器においては、熱交換効率の向上だけではなく、排水性の向上や霜の付着抑制、除霜性の向上等の種々の観点からの性能向上が求められている。かかる要求に対応するため、近年では、アウターフィンの形状が一層複雑化している。また、インナーフィンを備えた熱交換器においても、冷媒流路内における冷媒の流れをより高度に制御するため、インナーフィンの形状が一層複雑化している。このような状況に対応するため、ブレージングシートの成形性をより向上させることが強く望まれている。
[0009]
 例えば特許文献2のブレージングシートは、心材の金属組織を亜結晶粒からなる組織とすることにより、加工時に導入される転位組織の集中を緩和して成形性を高めている。しかし、特許文献2のブレージングシートは、耐高温座屈性について、未だ改善の余地がある。
[0010]
 このように、従来の成分範囲かつ製造条件範囲により作製されたアルミニウム合金クラッド材は、自己耐食性、耐高温座屈性及び成形性のうち少なくとも1つの特性について改善の余地があり、全ての特性に優れたアルミニウム合金クラッド材は得られていないのが現状である。
[0011]
 本発明は、かかる背景に鑑みてなされたものであり、自己耐食性、耐高温座屈性及び成形性の全てに優れた熱交換器フィン用ブレージングシート及びその製造方法を提供しようとするものである。

課題を解決するための手段

[0012]
 本発明の一態様は、Mn(マンガン):0.50質量%以上2.0質量%以下、Si(ケイ素):0.050質量%以上0.60質量%以下、Fe(鉄):0.050質量%以上0.70質量%以下を含有し、残部がAl(アルミニウム)及び不可避的不純物からなる化学成分を備え、繊維状組織を有する心材と、
 Si:6.0質量%以上13質量%以下、Fe:0質量%超え0.80質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を備え、前記心材上に積層されたろう材と、を有し、
 全伸びが3%以上であり、
 局部伸び/全伸びが0.35~0.95であり、
 耐力が100~200MPaであり、
 600℃の温度に3分間保持した場合に、前記心材の金属組織が200μmを超える平均結晶粒径を備えた再結晶組織に変化する特性を有する、
熱交換器フィン用ブレージングシートにある。
[0013]
 本発明の他の態様は、前記の態様の熱交換器フィン用ブレージングシートの製造方法であって、
 前記心材の化学成分を備えた心材用塊と、前記ろう材の化学成分を備えたろう材用塊とを重ね合わせてクラッド塊を作製し、
 前記クラッド塊を作製する前後のいずれかにおいて前記心材用塊を510℃未満の温度に加熱して均質化処理を行い、または、前記クラッド塊を作製する前後のいずれにおいても均質化処理を行わず、
 前記クラッド塊を400℃以上500℃以下の温度に加熱して、開始温度が前記温度範囲となる条件で前記クラッド塊に熱間圧延を行うことにより前記心材と前記ろう材とが積層されたクラッド材を作製し、
 85%以上の圧下率で前記クラッド材に冷間圧延を行い、
 その後、150℃から保持温度に到達するまでの平均昇温速度をr 1(℃/時間)、保持温度をT(℃)、保持時間をt(時間)、保持温度から150℃に到達するまでの平均冷却速度をr 2(℃/時間)とした場合に、下記式(1)~(3)を満足する条件で前記クラッド材に焼鈍を行う、
熱交換器フィン用ブレージングシートの製造方法にある。
 150≦T≦300・・・(1)
 250≦(T-150) 2/r 1+T・t+(T-150) 2/r 2≦2500 ・・・(2)
 r 2≦100 ・・・(3)

発明の効果

[0014]
 前記ブレージングシートにおける心材及びろう材は、それぞれ、前記特定の化学成分を有している。これにより、ろう付後における心材の自己耐食性を向上させることができる。
[0015]
 また、前記ブレージングシートの心材は、前記特定の化学成分を備えるとともに、繊維状組織を備えている。これにより、前記ブレージングシートにおける、全伸び、全伸びに対する局部伸びの比率である局部伸び/全伸び及び耐力を、それぞれ前記特定の範囲内とすることができる。これらの物性値で表現される機械的特性を備えたブレージングシートは、優れた成形性を有し、従来のフィンよりも複雑な形状を容易に形成することができる。
[0016]
 また、前記ブレージングシートの心材は、600℃の温度に3分間保持した場合、即ち、ろう付時に相当する加熱条件で加熱した場合に、前記特定の範囲の平均結晶粒径を備えた再結晶組織に変化する特性を有している。かかる特性を備えた心材は、ろう付中に再結晶し、比較的粒径の大きな再結晶粒を備えた再結晶組織を形成することができる。そして、再結晶粒の粒径を大きくすることにより、ろう付中の結晶粒界への溶融ろうの侵食を抑制し、耐高温座屈性を向上させることができる。
[0017]
 以上のように、前記ブレージングシートは、自己耐食性、耐高温座屈性及び成形性の全てに優れている。
[0018]
 また、前記の態様の製造方法は、心材用塊を準備した後、焼鈍までの各工程における条件を前記特定の範囲とすることにより、心材への入熱量を低減することができる。これにより、心材中に繊維状組織を形成するとともに、作製過程における心材中のMnの析出を抑制し、Mnの固溶量を多くすることができる。その結果、前述した機械的特性を心材に付与することができる。
[0019]
 また、前記の態様の製造方法により作製されたブレージングシートにおいては、心材がMnの過飽和固溶体となっている。心材中に固溶したMnは、ろう付時の急激な加熱によって一斉に析出し、心材中に多数の微細なMn系析出物を形成することができる。これらのMn系析出物は、結晶粒内の転位の運動を妨げるため、ろう付中における心材の再結晶の駆動力を低下させることができる。これにより、再結晶粒の成長速度が再結晶粒の発生速度よりも早くなり、再結晶粒の粒径を大きくすることができる。その結果、前述したように、ろう付時に相当する加熱条件で加熱した場合に前記特定の再結晶組織に変化する特性を心材に付与することができる。
[0020]
 以上の結果、前記の態様の製造方法によれば、前記ブレージングシートを容易に作製することができる。

図面の簡単な説明

[0021]
[図1] 実施例における、サグ試験の説明図である。
[図2] 実施例における、ろう付性の評価に用いたミニコア試験体の斜視図である。

発明を実施するための形態

[0022]
 前記ブレージングシートは、心材と、心材上に積層されたろう材とを有している。ろう材は、心材の片面に積層されていてもよいし、両面に積層されていてもよい。例えば、前記ブレージングシートからパラレルフロー型熱交換器に用いられるコルゲートフィンや、冷媒流路内に配置されるインナーフィンを形成する場合には、心材の両面にろう材が積層された3層構造のブレージングシートを使用することができる。また、例えば、前記ブレージングシートからプレートフィン型熱交換器に用いられるプレートフィンを形成する場合には、心材の片面にろう材が積層された2層構造のブレージングシートを使用することができる。
[0023]
・機械的特性
 前記ブレージングシートは、3%以上の全伸び、0.35~0.95の局部伸び/全伸び、100~200MPaの耐力を有している。前記ブレージングシートは、少なくとも、心材及びろう材の化学成分を前記特定の範囲とするとともに、心材の金属組織が繊維状組織を有していることにより、かかる機械的特性を実現することができる。
[0024]
 ブレージングシートの全伸びが3%未満の場合には、成形性が低くなり、複雑な形状のフィンを形成することが難しい。ブレージングシートの成形性をより向上させる観点からは、全伸びを5%以上とすることが好ましく、10%以上とすることがより好ましい。なお、成形性の向上の観点からは、ブレージングシートの全伸びの上限は特に限定されるものではない。前記特定の範囲の化学成分を有するブレージングシートの全伸びは、通常、25%以下となる。
[0025]
 ブレージングシートの局部伸び/全伸び、即ち全伸びに対する局部伸びの比は、心材中に固溶したMnの量の指標として利用することができる。例えば、心材中に固溶したMnの量が少ない場合には、局部伸び/全伸びの値が小さくなる傾向を有している。逆に、心材中に固溶したMnの量が多い場合には、局部伸び/全伸びの値が大きくなる傾向を有している。
[0026]
 局部伸び/全伸びの値を前記特定の範囲とすることにより、心材中に固溶したMnの量を適正な範囲にし、成形性と耐高温座屈性とをバランスよく向上させることができる。かかる観点からは、局部伸び/全伸びの値は、0.40~0.90であることが好ましく、0.45~0.85であることがより好ましい。
[0027]
 局部伸び/全伸びの値が0.35未満の場合には、心材中に固溶したMnの量が不足しているため、ろう付時の加熱によって析出するMn系析出物の量が少なくなる。そのため、再結晶の駆動力が大きくなり、再結晶粒の発生速度が成長速度よりも早くなる。その結果、ろう付後に多数の微細な再結晶粒が形成される。そして、溶融ろうと多くの結晶粒界が接触することにより、結晶粒界から溶融ろうが侵食しやすくなり、耐高温座屈性の低下を招くおそれがある。
[0028]
 また、局部伸び/全伸びの値が0.95を超える場合には、心材中に固溶したMnの量が過度に多くなる。そのため、ブレージングシートの成形性の低下を招くおそれがある。
[0029]
 ブレージングシートの耐力が100MPa未満の場合には、ブレージングシートが変形しやすくなるため、熱交換器の作製過程においてブレージングシートに意図しない変形が生じやすくなる。このような意図しない変形を抑制し、マテリアルハンドリングをより容易にする観点からは、ブレージングシートの耐力を110MPa以上にすることが好ましい。
[0030]
 また、ブレージングシートの耐力が200MPaを超える場合には、ブレージングシートをフィンの形状に成形する際のスプリングバックが大きくなるため、成形性の低下を招くおそれがある。スプリングバックの増大を回避する観点からは、ブレージングシートの耐力を190MPa以下にすることが好ましい。
[0031]
<心材>
 前記ブレージングシートの心材は、Mn:0.50質量%以上2.0質量%以下、Si:0.050質量%以上0.60質量%以下、Fe:0.050質量%以上0.70質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を備え、繊維状組織を有している。
[0032]
・Mn(マンガン):0.50質量%以上2.0質量%以下
 心材中のMnは、ブレージングシートの作製過程において心材中に固溶し、ブレージングシートの成形性を向上させることができる。また、Mnは、SiやFeとともに、Al-Mn-Si系金属間化合物やAl-Mn-Si-Fe系金属間化合物を形成し、心材の強度を向上させることができる。
[0033]
 また、心材中に固溶したMnは、結晶粒中に存在する転位の運動を阻害し、焼鈍時に転位の再配列が起こる領域を狭くすることができる。これにより、焼鈍後に、格子欠陥の分布の偏りが小さく、比較的均一な組織を形成することができる。そして、かかる組織を備えたブレージングシートは、フィンの形状に成形する際に導入される歪みの偏りを低減することができる。以上の結果、ブレージングシートの成形性を向上させることができる。
[0034]
 更に、固溶Mnは、ろう付時の加熱によって心材中に析出し、多数の微細なMn系析出物を形成することができる。ろう付中にこれらのMn系析出物が析出することにより、転位の運動を阻害し、再結晶の駆動力を低下させることができる。
[0035]
 心材中のMnの含有量を前記特定の範囲とすることにより、ブレージングシートの成形性、強度及び耐高温座屈性を向上させることができる。優れた成形性を維持しつつ強度及び耐高温座屈性をより向上させる観点からは、Mnの含有量を1.0質量%以上とすることが好ましい。また、優れた強度及び耐高温座屈性を維持しつつ成形性をより向上させる観点からは、Mnの含有量を1.5質量%以下とすることが好ましい。
[0036]
 Mnの含有量が0.50質量%未満の場合には、心材中に固溶したMnの量が少なくなり、成形性及び耐高温座屈性の低下を招くおそれがある。また、Mnの含有量が2.0質量%を超える場合には、ブレージングシートの作製過程において、心材が割れやすくなるおそれがある。
[0037]
・Si(ケイ素):0.050質量%以上0.60質量%以下
 心材中のSiは、MnやFeとともに、Al-Mn-Si系金属間化合物やAl-Mn-Si-Fe系金属間化合物を形成し、心材の強度を向上させることができる。心材中のSiの含有量を前記特定の範囲とすることにより、ブレージングシートの強度を向上させることができる。ブレージングシートの強度をより向上させる観点からは、Siの含有量を0.10質量%以上とすることが好ましい。Siの含有量が0.050質量%未満の場合には、ブレージングシートの強度が低下し、熱交換器の作製過程等において意図しない変形が生じやすくなるおそれがある。
[0038]
 ブレージングシートの強度を向上させる観点からは、Siの含有量を多くすることが好ましい。しかし、Siの含有量が過度に多くなると、ブレージングシートの作製過程におけるMnの析出が促進される。その結果、心材中に固溶したMnの量が減少し、ブレージングシートの耐高温座屈性が低下するおそれがある。Siの含有量を0.60質量%以下とすることにより、前述したMnの析出を抑制することができる。Mnの析出をより効果的に抑制する観点からは、Siの含有量を0.50質量%以下にすることが好ましい。
[0039]
・Fe:0.050質量%以上0.70質量%以下
 心材中のFeは、Siと同様に、Al-Mn-Si-Fe系金属間化合物を形成し、心材の強度を向上させることができる。心材中のFeの含有量を前記特定の範囲とすることにより、ブレージングシート強度を向上させることができる。ブレージングシートの強度をより向上させる観点からは、Feの含有量を0.10質量%以上とすることが好ましい。Feの含有量が0.050質量%未満の場合には、ブレージングシートの強度が低下し、熱交換器の作製過程等において不要な変形が生じやすくなるおそれがある。
[0040]
 また、Feの含有量が過度に多くなると、Siと同様にブレージングシートの作製過程におけるMnの析出が促進され、ブレージングシートの耐高温座屈性の低下を招くおそれがある。Feの含有量を0.70質量%以下とすることにより、前述したMnの析出を抑制することができる。Mnの析出をより効果的に抑制する観点からは、Feの含有量を0.40質量%以下にすることが好ましい。
[0041]
 心材は、前述した必須成分としてのMn、Si及びFeに加え、Zn、Cu、Mg、Cr、Zr、Ti、V等の元素を任意成分として含んでいてもよい。
[0042]
・Zn(亜鉛):0.50質量%以上3.5質量%以下
 Znは、心材の電位を卑化して犠牲防食機能を付与することができる。Znの含有量を前記特定の範囲とすることにより、ろう付後の心材を犠牲防食材として機能させ、熱交換器における管の腐食をより長期間に亘って抑制することができる。Znの含有量が0.50質量%未満の場合には、心材の犠牲防食効果が小さくなる。一方、Znの含有量が3.5質量%を超える場合には、心材の電位が過度に卑化し、かえってフィンの自己耐食性の低下を招くおそれがある。
[0043]
・Cu(銅):0.050質量%超え0.30質量%未満
 Cuは、心材の強度を向上させる作用を有している。Cuの含有量を前記特定の範囲とすることにより、ブレージングシートの強度をより向上させることができる。Cuの含有量が0.50質量%未満の場合には、強度を向上する効果が不十分となる。一方、Cuの含有量が0.30質量%を超える場合には、耐粒界腐食感受性が低下し、自己耐食性の低下を招くおそれがある。
[0044]
・Mg(マグネシウム):0.050質量%以上1.0質量%以下
 心材中のMgは、SiとともにMg 2Siの析出物を形成し、心材の強度を向上させる作用を有している。Mgの含有量を前記特定の範囲とすることにより、ブレージングシートの強度をより向上させることができる。Mgの含有量が0.050質量%未満の場合には、強度を向上させる効果が不十分となる。一方、Mgの含有量が1.0質量%を超える場合には、ろう付性の低下を招くおそれがある。
[0045]
・Cr(クロム):0.30質量%未満
 Crは、心材中に固溶して心材の強度を向上させる作用を有している。また、Crは、ろう付時の加熱によってAl-Cr系化合物として析出し、再結晶粒の粒径を大きくする作用を有している。Crの含有量を前記特定の範囲とすることにより、ブレージングシートの強度をより向上させるとともに、耐高温座屈性をより向上させることができる。Crの含有量が0.30質量%以上の場合には、粗大なAl-Cr系化合物が形成されやすくなり、加工性の低下を招くおそれがある。
[0046]
 心材中のCrの含有量は、0.050質量%以上0.10質量%未満であることがより好ましい。この場合には、前述の作用効果を得つつ、粗大なAl-Cr系化合物の形成をより効果的に抑制することができる。
[0047]
・Zr(ジルコニウム):0.30質量%未満
 Zrは、心材中に固溶して心材の強度を向上させる作用を有している。また、Zrは、ろう付時の加熱によってAl-Zr系化合物として析出し、再結晶粒の粒径を大きくする作用を有している。Zrの含有量を前記特定の範囲とすることにより、ブレージングシートの強度をより向上させるとともに、耐高温座屈性をより向上させることができる。Zrの含有量が0.30質量%以上の場合には、粗大なAl-Zr系化合物が形成されやすくなり、加工性の低下を招くおそれがある。
[0048]
 心材中のZrの含有量は、0.050質量%以上0.10質量%未満であることがより好ましい。この場合には、前述の作用効果を得つつ、粗大なAl-Zr系化合物の形成をより効果的に抑制することができる。
[0049]
・Ti(チタン):0.30質量%未満
 Tiは、心材中に固溶して心材の強度を向上させる作用を有している。Tiの含有量を前記特定の範囲とすることにより、ブレージングシートの強度をより向上させることができる。Tiの含有量が0.30質量%以上の場合には、粗大なAl-Ti系化合物が形成されやすくなり、加工性の低下を招くおそれがある。
[0050]
 心材中のTiの含有量は、0.05質量%以上0.10質量%未満であることがより好ましい。この場合には、前述の作用効果を得つつ、粗大なAl-Ti系化合物の形成をより効果的に抑制することができる。
[0051]
・V(バナジウム):0.05質量%以上0.10質量%未満
 Vは、心材中に固溶して心材の強度および耐食性を向上させる作用を有している。Vの含有量を前記特定の範囲とすることにより、ブレージングシートの強度および耐食性をより向上させることができる。Vの含有量が0.05質量%未満の場合には、前述した作用効果が不十分となる。Vの含有量が0.10質量%以上の場合には、粗大なAl-V系化合物が形成されやすくなり、加工性の低下を招くおそれがある。
[0052]
 前述した任意成分のうち、Cr、Zr、Ti及びVの含有量の合計は、0.30質量%未満であることが好ましく、0.10質量%未満であることがより好ましい。Cr、Zr、Ti及びVの含有量の合計が0.30質量%以上の場合には、ブレージングシートの加工性の低下を招くおそれがある。
[0053]
・金属組織
 ブレージングシートの心材は、繊維状組織を有している。即ち、心材は、金属組織の一部に繊維状組織を有していてもよいし、金属組織が繊維状組織から構成されていてもよい。これにより、ブレージングシートの成形性を向上させることができる。
[0054]
 心材の金属組織は、繊維状組織のみから構成されていることが好ましい。心材中に再結晶組織が存在している場合には、ブレージングシートをフィンの形状に成形する際に、成形加工によって導入される歪みが再結晶組織に局在化しやすい。そのため、フィンの形状に成形する際の加工条件によっては、ブレージングシートに割れが発生しやすくなるおそれがある。心材の金属組織中に再結晶組織が含まれず、全て繊維状組織からなる金属組織とすることにより、ブレージングシートの成形性をより向上させ、より厳しい加工条件においてもブレージングシートの割れの発生を抑制することができる。
[0055]
 なお、前述した繊維状組織とは、圧延方向に引き伸ばされた多数の結晶粒を備えた組織をいう。繊維状組織は、例えば、倍率25~100倍の金属顕微鏡を用いて圧延方向に平行な断面(つまり、L-LT面)を観察した場合に、圧延方向に延びる筋状の模様として観察される。また、再結晶組織とは、多数の等軸な結晶粒を備えた組織をいう。再結晶組織は、例えば、倍率25~100倍の金属顕微鏡を用いて圧延方向に平行な断面(つまり、L-LT面)を観察した場合に、長径と短径との差が比較的小さい粒状の模様として観察される。
[0056]
 また、心材は、600℃の温度に3分間保持した場合、即ち、ろう付に相当する条件で加熱した場合に、金属組織が200μmを超える平均結晶粒径を備えた再結晶組織に変化する特性を有している。これにより、ろう付中における溶融ろうの結晶粒界への侵食を抑制し、耐高温座屈性を向上させることができる。なお、前記の加熱を行う場合の昇温速度は特に限定されないが、例えば、150℃から400℃までの平均昇温速度を50~300℃/分の範囲から適宜設定し、400℃から600℃までの平均昇温速度を10~60℃/分の範囲から適宜設定することができる。
[0057]
 前述した条件で加熱した後の再結晶組織の平均結晶粒径が200μm未満となる場合には、ろう付中に多数の結晶粒界が溶融ろうに接触するため、溶融ろうが結晶粒界へ侵食しやすくなる。その結果、耐高温座屈性の低下を招くおそれがある。なお、前記再結晶組織の平均結晶粒径の上限は、耐高温座屈性の向上の観点からは特に限定されるものではない。前記特定の化学成分を備えた心材の場合、前記再結晶組織の平均結晶粒径は、通常、900μm以下である。
[0058]
 心材は、600℃の温度に3分間保持した場合に、金属組織が250μmを超える平均結晶粒径を備えた再結晶組織に変化する特性を有することが好ましい。この場合には、ろう付中における溶融ろうの結晶粒界への侵食をより効果的に抑制し、耐高温座屈性をより向上させることができる。
[0059]
<ろう材>
 ろう材は、前述したように、心材の少なくとも片面に積層されている、ろう材は、Si:6.0質量%以上13質量%以下、Fe:0質量%超え0.80質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有している。
[0060]
・Si:6.0質量%以上13質量%以下
 ろう材中のSiは、ろう材の融点を低下させる作用を有している。ろう材中のSiの含有量を前記特定の範囲とすることにより、ろう付時に適正な量の溶融ろうを発生させ、熱交換器における管とフィンとをろう付することができる。Siの含有量が6.0質量%未満の場合には、ろう付時に生じる溶融ろうが不足するため、管とフィンとのろう付性の低下を招くおそれがある。Siの含有量が13質量%を超える場合には、ブレージングシートの作製過程においてろう材に割れが発生しやすくなる。
[0061]
・Fe:0質量%超え0.80質量%以下
 ろう材中のFeは、溶融ろうの流動性を高める作用を有している。Feの含有量を前記特定の範囲とすることにより、溶融ろうの流動性を高め、管とフィンとのろう付性を向上させることができる。Feの含有量が0.80質量%を超える場合には、ろう付中にろう材から心材へ拡散するFeの量が多くなり、心材の自己耐食性の低下を招くおそれがある。
[0062]
 Feの含有量は、0.050質量%以上とすることが好ましい。この場合には、管とフィンとのろう付性をより向上させることができる。更に、この場合には、ろう材を作製するに当たって一般的な純度の地金を使用することができる。そのため、材料コストの増大を抑制することができる。
[0063]
 ろう材は、前述した必須成分としてのSi及びFeに加え、Sr、Na、Bi、Zn、Cu等の元素を任意成分として含んでいてもよい。
[0064]
・Sr(ストロンチウム):0.0030質量%以上0.050質量%以下、Na(ナトリウム):0.0030質量%以上0.050質量%以下、Bi(ビスマス):0.030質量%以上0.15質量%以下
 これらの元素は、溶融ろうの流動性を向上させる作用を有している。これらの元素の含有量を前記特定の範囲とすることにより、管とフィンとのろう付性をより向上させることができる。
[0065]
・Zn(亜鉛):0.30質量%以上3.0質量%以下
 ろう材中のZnは、ろう材の電位を卑化して犠牲防食機能を付与することができる。Znの含有量を前記特定の範囲とすることにより、ろう付後のろう材を犠牲防食材として機能させ、フィン及び管の腐食を長期間に亘って抑制することができる。Znの含有量が0.30質量%未満の場合には、ろう材の犠牲防食効果が小さくなる。一方、Znの含有量が3.0質量%を超える場合には、ろう材の電位が過度に卑化し、かえってフィンの自己耐食性の低下を招くおそれがある。
[0066]
・Cu:0.10質量%以上0.70質量%以下
 ろう材中のCuは、ろう材の強度を向上させる作用を有している。ろう材中のCuの含有量を前記特定の範囲とすることにより、ろう材の強度をより向上させることができる。その結果、ブレージングシートの強度をより向上させ、マテリアルハンドリングをより容易に行うとともに、熱交換器の作製過程における意図しないブレージングシートの変形をより抑制することができる。
[0067]
 Cuの含有量が0.10質量%未満の場合には、ろう材の強度向上効果が低くなるおそれがある。Cuの含有量が0.70質量%を超える場合には、耐粒界腐食感受性が低下し、フィンの自己耐食性の低下を招くおそれがある。
[0068]
 前記ブレージングシートは、例えば、以下の方法により作製することができる。まず、心材の化学成分を有する心材用塊及びろう材の化学成分を有するろう材用塊を準備する。心材用塊は、例えば、半連続鋳造や連続鋳造等の製造方法により作製することができる。また、ろう材用塊は、例えば、半連続鋳造や連続鋳造等の製造方法により鋳造した後、必要に応じて圧延を行うことにより作製することができる。
[0069]
 これらの塊を準備した後、心材用塊の片面または両面にろう材用塊を重ね合わせてクラッド塊を作製する。このクラッド塊を作製する前後のいずれかにおいて、必要に応じて、心材用塊を加熱して均質化処理を行ってもよい。即ち、ろう材用塊と重ね合わせる前の心材用塊を加熱して均質化処理を行ってもよいし、クラッド塊を加熱して均質化処理を行ってもよい。また、クラッド塊を作成する前後のいずれにおいても、均質化処理を行わなくてもよい。
[0070]
 均質化処理を行う場合には、保持温度が510℃未満となるように心材用塊を加熱する。このように、均質化処理を省略するか、または、前記特定の温度範囲で均質化処理を行うことにより、心材用塊中に固溶したMnの析出を抑制することができる。保持温度が510℃を超える場合には、心材用塊中に固溶したMnが析出し、Mnの固溶量の減少を招くおそれがある。その結果、最終的に得られるブレージングシートにおける心材中のMnの固溶量が少なくなり、耐高温座屈性の低下を招くおそれがある。
[0071]
 次に、クラッド塊を400℃以上500℃以下の温度に加熱し、開始温度が前記温度範囲となる条件でクラッド塊に熱間圧延を行う。これにより、心材とろう材とが積層されたクラッド材を作製する。熱間圧延の開始温度が400℃未満の場合には、心材用塊とろう材用塊とをクラッド接合することが難しい。熱間圧延の開始温度は、420℃以上とすることが好ましい。この場合には、心材用塊とろう材用塊とのクラッド接合をより容易に行うことができる。
[0072]
 また、熱間圧延の開始温度が500℃を超える場合には、熱間圧延中の加工発熱によって心材用塊の温度が上昇し、心材用塊中に固溶したMnが析出するおそれがある。その結果、最終的に得られるブレージングシートにおける心材中のMnの固溶量が少なくなり、耐高温座屈性の低下を招くおそれがある。熱間圧延中のMnの析出をより効果的に抑制する観点からは、熱間圧延の開始温度を490℃以下とすることが好ましい。
[0073]
 熱間圧延の後、得られたクラッド材に85%以上の圧下率で冷間圧延を行う。冷間圧延においては、クラッド材を1パスで所望の板厚まで圧延してもよいし、2パス以上で圧延してもよい。冷間圧延における圧下率を85%以上とすることにより、心材中に繊維状組織を形成することができる。冷間圧延の圧下率が85%未満の場合には、心材中に繊維状組織が形成されにくくなり、ブレージングシートの成形性の低下を招くおそれがある。
[0074]
 冷間圧延を行った後、下記式(1)~(3)を満足する条件で前記クラッド材に焼鈍を行う。
[0075]
 150≦T≦300・・・(1)
 250≦(T-150) 2/r 1+T・t+(T-150) 2/r 2≦2500 ・・・(2)
 r 2≦100 ・・・(3)
 ただし、前記式(1)~(3)において、r 1は150℃から保持温度に到達するまでの平均昇温速度(単位:℃/時間)、Tは保持温度(単位:℃)、tは保持時間(単位:時間)、r 2は保持温度から150℃に到達するまでの平均冷却速度(単位:℃/時間)を表す記号である。なお、前記式(2)における不等号で挟まれた多項式は、温度が150℃以上である間の入熱量(単位:℃・時間)を表している。以下において、当該多項式の値を記号Qで表す。
[0076]
 保持温度T及び入熱量Qは、心材中のMnの固溶量及び心材の回復に影響を及ぼす条件である。前保持温度T及び入熱量Qが前記式(1)及び式(2)を満たすように焼鈍を行うことにより、心材中のMnの析出を抑制しつつ、心材を適度に回復させることができる。また、かかる条件で焼鈍を行うことにより、心材中の転位を再配列させ、格子欠陥の分布の偏りが小さく、比較的均一な組織を形成することができる。その結果、ブレージングシートの成形性を向上させることができる。
[0077]
 保持温度Tが150℃未満の場合、または、入熱量Qが250℃・時間未満の場合には、心材の回復が不十分となるため、ブレージングシートの成形性の低下を招くおそれがある。かかる問題を回避し、ブレージングシートの成形性をより向上させる観点からは、保持温度Tを160℃以上とすることが好ましい。同様に、入熱量Qを300℃・時間以上とすることが好ましい。
[0078]
 また、保持温度Tが300℃を超える場合、または、入熱量Qが2500℃・時間を超える場合には、心材中に固溶したMnの析出によってMnの固溶量が低下するため、ろう付中における再結晶の駆動力が大きくなる。その結果、ろう付時の加熱によって微細な再結晶粒が形成され、高温耐座屈性の低下を招くおそれがある。かかる問題を回避し、高温耐座屈性をより向上させる観点からは、保持温度Tを290℃以下とすることが好ましい。同様に、入熱量Qを2250℃・時間以下とすることが好ましい。
[0079]
 また、平均冷却速度r 2は、焼鈍中のMnの拡散に影響を及ぼす条件である。平均冷却速度r 2が前記式(3)を満たすように焼鈍を行うことにより、心材中に固溶したMnを十分に拡散させ、結晶粒中に存在する転位の近傍までMnを移動させることができる。そして、固溶Mnによって転位の移動が妨げられることにより、格子欠陥の更なる移動を抑制し、前述した格子欠陥の偏りの小さい組織を得ることができる。それ故、平均冷却速度r 2が前記式(3)を満たすように焼鈍を行うことにより、優れた成形性を有するブレージングシートを得ることができる。
[0080]
 平均冷却速度r 2が100℃/時間を超える場合には、Mnの拡散が不十分となるため、格子欠陥が移動しやすくなる。その結果、格子欠陥の分布の偏りが大きくなるおそれがあり、ひいては成形性の低下を招くおそれがある。なお、成形性を向上させる観点からは、平均冷却速度r 2の下限は特に限定されるものではないが、平均冷却速度r 2が過度に小さい場合には、生産性の悪化を招くおそれがある。生産性の悪化を回避する観点からは、平均冷却速度r 2を25℃/時間以上とすることが好ましく、30℃/時間以上とすることがより好ましい。
[0081]
 前述した態様でクラッド材に熱間圧延、冷間圧延及び焼鈍を行うことにより、前記ブレージングシートを得ることができる。また、クラッド材に焼鈍を行った後、必要に応じて、更に、冷間圧延や焼鈍を適宜組み合わせて実施し、ブレージングシートの機械的特性を調整することもできる。
[0082]
 例えば、焼鈍を行った後に40%以下の圧下率で第2冷間圧延を行ってもよい。この場合には、焼鈍により回復したクラッド材に再度歪みを付与し、得られるブレージングシートの弾力性をより向上させることができる。その結果、マテリアルハンドリングをより容易に行うことができるブレージングシートを得ることができる。
[0083]
 また、例えば、焼鈍を行った後に60%以下の圧下率で第2冷間圧延を行い、次いで保持温度T 2(℃)が前記焼鈍における保持温度T以下となる条件で第2焼鈍を行ってもよい。この場合には、ブレージングシートの伸びの低下を抑制しつつ、弾力性をより向上させることができる。その結果、成形性を維持しつつ、マテリアルハンドリングをより容易に行うことができるブレージングシートを得ることができる。
実施例
[0084]
 前記ブレージングシート及びその製造方法の実施例を以下に説明する。なお、本発明に係るブレージングシート及びその製造方法の具体的な態様は以下の実施例に限定されるものではなく、本発明の趣旨を損なわない範囲で適宜構成を変更することができる。
[0085]
 本例では、まず、表1に示す化学成分を有する心材用塊及びろう材用塊を作製した。そして、心材用塊の片面にろう材用塊を重ね合わせてクラッド塊A1~A17を作製した。これらのクラッド塊に、表2に示す条件B1~B19のいずれかの条件で均質化処理、熱間圧延、冷間圧延、焼鈍、第2冷間圧延及び第2焼鈍を行い、板厚0.10mmの片面ブレージングシート(表3、試験材C1~C28)を作製した。なお、熱間圧延における圧下率は99.7%とし、冷間圧延における圧下率は85%以上とした。また、第2焼鈍は、保持温度T 2が焼鈍における保持温度T以下となる条件で行った。
[0086]
 これらの試験材のうち、クラッド塊A10を使用した試験材C14については、ろう材用塊中のSi量が前記特定の範囲よりも多かったため、ろう材用塊の作製中に割れが発生し、熱間圧延を行うことができなかった。クラッド塊A17を使用した試験材C21については、心材用塊中のMn量が前記特定の範囲よりも多かったため、冷間圧延中にクラッド板に割れが発生した。また、製造条件B15を採用した試験材C24については、熱間圧延前のクラッド塊の加熱温度が前記特定の範囲よりも低かったため、ろう材用塊と心材用塊とをクラッド接合することができなかった。そのため、試験材C14、C21及びC24については、以降の製造工程を中止した。
[0087]
 ブレージングシートを作製することができた試験材C1~C13、C15~C20、C22~23及びC25~C28については、以下の方法により、機械的特性、金属組織、成形性、耐高温座屈性、ろう付性及び自己耐食性の評価を行った。
[0088]
・機械的特性
 試験材から、圧延方向と長手方向とが平行になるようにしてJIS Z2241:2011に規定された13B号試験片を採取した。そして、JIS Z2241:2011の規定に従い、室温下で引張試験を行った。引張試験により得られた応力-歪み曲線に基づき、全伸び、局部伸び/全伸び及び耐力を算出した。これらの結果は、表3に示した通りであった。
[0089]
・金属組織
 各試験材を圧延方向と平行な方向に切断し、L-LT面を露出させた。倍率50倍の金属顕微鏡を用い、このL-LT面における心材部分の表面偏光ミクロ写真を撮影した。各試験材の心材の金属組織は、表3に示した通りであった。
[0090]
 また、150℃から400℃に到達するまでの所要時間が4分となり、400℃から600℃に到達するまでの所要時間が11分となるように各試験材を加熱した後、600℃の温度を3分間保持した。このようにして各試験材を前述したろう付時に相当する条件で加熱した後に、前記と同様に、L-LT面における心材部分の表面偏光ミクロ写真を撮影した。得られた表面偏光ミクロ写真において、視野面積を視野内に存在する結晶粒の数で除し、結晶粒の面積の平均値を算出した。この平均値から算出した円相当径を、再結晶粒の平均結晶粒径とした。各試験材の平均結晶粒径は表3に示した通りであった。
[0091]
・成形性
 各試験材にプレス加工を施し、カラー部を備えたプレートフィンを作製した。そして、カラー部を目視により観察し、カラー部に割れが生じなかった場合には表3の「成形性」欄に記号「A」を、割れが生じた場合には同欄に記号「B」を記載した。成形性の評価においては、カラー部に割れが生じなかった記号「A」の場合を、成形性が良好であるため合格と判定し、割れが生じた記号「B」の場合を、成形性に劣るため不合格と判定した。
[0092]
・耐高温座屈性
 まず、各試験材から幅16mm、長さ50mmの小片を採取した。そして、以下に説明するサグ試験を実施し、この小片Sの耐高温座屈性を評価した。図1に示すように、サグ試験に用いた試験装置1は、試料台2と、試料台2に小片Sを取り付ける固定冶具3とを有している。試料台2と固定冶具3との間には、小片Sの長手方向における一方の端部S2が試料台2から水平方向に突出するようにして、小片Sの長手方向における他方の端部S1が挟持される。即ち、小片Sは、試験装置1に片持ち梁の状態で取り付けられる。本例では、小片Sにおける試料台2から外方に突出した部分の長さLを30mmとした。
[0093]
 このように小片Sを試験装置1に取り付けた後、小片1をろう付時の加熱に相当する条件で加熱した。そして、端部S2の垂下量h、即ち、加熱前における試料台2から突出した端部S2の位置から加熱後における端部の位置までの鉛直方向における長さを測定した。
[0094]
 サグ試験を行った結果、端部S2の垂下量hが20mm以下の場合には表3の「耐高温座屈性」欄に記号「A」を、20mmを超えた場合には同欄に記号「B」を記載した。耐高温座屈性の評価においては、端部S2の垂下量hが20mm以下である記号「A」の場合を、ろう付時の加熱による変形が小さく、耐高温座屈性に優れているため合格と判定し、垂下量hが20mm以下である記号「B」の場合を、ろう付時の加熱による変形が大きく、耐高温座屈性に優れているため不合格と判定した。
[0095]
・ろう付性
 ろう付性の評価においては、コルゲートフィン型熱交換器のコアを模擬したミニコア試験体4を作製し、フィンの接合率に基づいてろう付性の評価を行った。図2に示すように、ミニコア試験体4は、心材からなるコルゲートフィン41と、このコルゲートフィン41を挟持する2枚の平板42とを有している。コルゲートフィン41の頂部411は、図示しないろう材により平板42に接合されている。本評価において、平板42としては、JIS A3003合金からなる、長さ60mm、幅16mm、板厚0.50mmの板材を使用した。また、コルゲートフィン41の長さは50mm、高さは20mm、頂部411のピッチは3mmとした。
[0096]
 ミニコア試験体4は、具体的には、以下のようにして作製した。まず、試験材を所定の寸法に切断した後、前述したコルゲートフィン41の形状となるようにコルゲート加工を施した。また、試験材の加工とは別に、A3003合金の板材から上記の形状を有する平板42を作製した。そして、これらの部品をアセトンにより脱脂したのち、試験材を2枚の平板で挟持して組立体を作製した。
[0097]
 組立体にフッ化物系フラックスを塗布した後、不活性ガス雰囲気中において、150℃から400℃に到達するまでの所要時間が4分、400℃から600℃に到達するまでの所要時間が11分となる加熱条件で600℃まで組立体を加熱した。そして、600℃の温度を3分間保持してろう材を溶融させ、心材からなるコルゲートフィン41と平板42とをろう付した。
[0098]
 以上により得られたミニコア試験体4からコルゲートフィン41を切除し、2枚の平板42に存在するフィレットの痕跡に基づいて、以下の方法により接合率を算出した。まず、個々のフィレットの痕跡について、平板42の幅方向における長さを測定し、これらの合計を算出した。これとは別に、平板42とコルゲートフィン41とが完全に接合されたと仮定した場合のフィレットの板幅方向における長さの合計を算出した。そして、後者の値に対する前者の値の比率を接合率(%)とした。なお、後者の値は、例えば、コルゲートフィン41の幅と、コルゲートフィン41の頂部411とを掛け合わせることにより算出できる。
[0099]
 表3中の「ろう付性」の欄には、接合率が90%以上である場合には記号「A」、90%未満の場合には記号「B」を記載した。ろう付性の評価においては、接合率が90%以上である記号Aの場合を、ろう付性が良好であるため合格と判定した。また、接合率が90%未満である記号Bの場合を、ろう付不良のおそれがあるため不合格と判定した。
[0100]
・自己耐食性
 各試験材から幅50mm、長さ150mmの小片を採取し、長さ方向と鉛直方向とが平行になるようにして小片を加熱炉内に吊り下げた。そして、加熱炉内に窒素ガスを流しつつ、150℃から400℃に到達するまでの所要時間が4分、400℃から600℃に到達するまでの所要時間が11分となる加熱条件で600℃まで小片を加熱した。そして、600℃の温度を3分間保持してろう材を溶融させた。
[0101]
 加熱後の小片を用いてASTM G85に準拠した条件によりSWAAT試験(Sea Water Acetic Acid Test)を行い、試験開始から50時間経過した時点での小片の質量を測定した。そして、試験開始時から50時間経過した時点までの質量の減少量が50mg/m 2以下の場合には、表3中の「自己耐食性」欄に記号「A」、50mg/m 2を超えた場合には、同欄に記号「B」を記載した。
[0102]
 自己耐食性の評価においては、質量の減少量が50mg/m 2以下である記号「A」の場合を、腐食を抑制できているため合格と判定し、質量の減少量が50mg/m 2を超えた記号「B」の場合を、腐食しやすいため不合格と判定した。
[0103]
[表1]


[0104]
[表2]


[0105]
[表3]


[0106]
 表1~表3に示したように、試験材C1~C12は、前記特定の範囲の化学成分を備えた心材用塊及びろう材用塊から、前記特定の範囲の製造条件により作製されている。そして、得られたブレージングシートの機械的特性及び金属組織は、前記特定の範囲内である。それ故、これらの試験材は、成形性、耐高温座屈性、ろう付性及び自己耐食性のいずれにも優れていた。これらの結果から、試験材C1~C12は、熱交換器のフィン用として好適であることが理解できる。
[0107]
 試験材C13は、ろう材中のSiの含有量が前記特定の範囲よりも少なかったため、溶融ろうの量が不足した。その結果、ろう付性が不合格となった。
 試験材C14は、ろう材中のSiの含有量が前記特定の範囲よりも多かったため、前述したように、ブレージングシートを作製することができなかった。
 試験材C15は、ろう材中のFeの含有量が前記特定の範囲よりも多かったため、ろう材中のFeがろう付時に心材へ拡散した。その結果、自己耐食性が不合格となった。
[0108]
 試験材C16は、心材中のSiの含有量が前記特定の範囲よりも少なかったため、ブレージングシートの耐力の低下を招いた。その結果、成形性が不合格となった。
 試験材C17は、心材中のSiの含有量が前記特定の範囲よりも多かったため、心材中のMnの析出が促進され、再結晶の駆動力が大きくなった。その結果、耐高温座屈性が不合格となった。
[0109]
 試験材C18は、心材中のFeの含有量が前記特定の範囲よりも少なかったため、ブレージングシートの耐力の低下を招いた。その結果、成形性が不合格となった。
 試験材C19は、心材中のFeの含有量が前記特定の範囲よりも多かったため、心材中のMnの析出が促進され、再結晶の駆動力が大きくなった。その結果、耐高温座屈性が不合格となった。
[0110]
 試験材C20は、心材中のMnの含有量が前記特定の範囲よりも少なかったため、心材中のMnの固溶量が不足し、格子欠陥の分布の偏りが大きくなるとともに再結晶の駆動力が大きくなった。その結果、成形性及び耐高温座屈性が不合格となった。
 試験材C21は、心材中のMnの含有量が前記特定の範囲よりも多かったため、前述したように、ブレージングシートを作製することができなかった。
[0111]
 試験材C22は、焼鈍における保持温度Tが前記特定の範囲よりも低く、かつ、入熱量Qが前記特定の範囲よりも少なかったため、心材が十分に回復しなかった。そのため、ブレージングシートの全伸びが前記特定の範囲よりも小さくなり、成形性が不合格となった。
 試験材C23は、均質化処理における保持温度が前記特定の範囲よりも高かったため、心材中に固溶したMnの量が少なくなった。そのため、ブレージングシートの局部伸び/全伸びが前記特定の範囲よりも大きくなり、成形性が不合格となった。
[0112]
 試験材C24は、熱間圧延前の加熱温度が前記特定の範囲よりも低かったため、前述したように、ブレージングシートを作製することができなかった。
[0113]
 試験材C25は、焼鈍における保持温度Tが前記特定の範囲よりも高かったため、焼鈍中に心材が再結晶した。そのため、ブレージングシートの成形性が不合格となった。
 試験材C26は、焼鈍における保持温度Tが前記特定の範囲よりも低く、かつ、入熱量Qが前記特定の範囲よりも少なかったため、心材が十分に回復しなかった。その結果、ブレージングシートの全伸びが前記特定の範囲よりも小さくなり、成形性が不合格となった。また、試験材C27は、局部伸び/全伸びが前記特定の範囲よりも小さくなり、耐高温座屈性も不合格となった。
[0114]
 試験材C27は、焼鈍時の入熱量Qが前記特定の範囲よりも小さかったため、心材が十分に回復しなかった。その結果、成形性が不合格となった。
 試験材C28は、焼鈍時の入熱量Qが前記特定の範囲よりも大きかったため、再結晶の駆動力が大きくなった。その結果、耐高温座屈性が不合格となった。

請求の範囲

[請求項1]
 Mn:0.50質量%以上2.0質量%以下、Si:0.050質量%以上0.60質量%以下、Fe:0.050質量%以上0.70質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を備え、繊維状組織を有する心材と、
 Si:6.0質量%以上13質量%以下、Fe:0質量%超え0.80質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を備え、前記心材上に積層されたろう材と、を有し、
 全伸びが3%以上であり、
 局部伸び/全伸びが0.35~0.95であり、
 耐力が100~200MPaであり、
 600℃の温度に3分間保持した場合に、前記心材の金属組織が200μmを超える平均結晶粒径を備えた再結晶組織に変化する特性を有する、
 熱交換器フィン用ブレージングシート。
[請求項2]
 前記心材は、Zn:0.50質量%以上3.5質量%以下、Cu:0.050質量%超え0.30質量%未満、Mg:0.050質量%以上1.0質量%以下のうち1種または2種以上を更に含有している、請求項1に記載の熱交換器フィン用ブレージングシート。
[請求項3]
 前記心材は、Cr:0.30質量%未満、Zr:0.30質量%未満、Ti:0.30質量%未満、V:0.05質量%以上0.10質量%未満のうち1種または2種以上を更に含有しており、Cr、Zr、Ti及びVの含有量の合計が0.30質量%未満である、請求項1または2に記載の熱交換器フィン用ブレージングシート。
[請求項4]
 前記ろう材は、Sr:0.0030質量%以上0.050質量%以下、Na:0.0030質量%以上0.050質量%以下、Bi:0.030質量%以上0.15質量%以下のうち1種または2種以上を更に含有している、請求項1~3のいずれか1項に記載の熱交換器フィン用ブレージングシート。
[請求項5]
 前記ろう材は、Zn:0.30質量%以上3.0質量%以下、Cu:0.10質量%以上0.70質量%以下のうち1種または2種を更に含有している、請求項1~4のいずれか1項に記載の熱交換器フィン用ブレージングシート。
[請求項6]
 請求項1~5のいずれか1項に記載の熱交換器フィン用ブレージングシートの製造方法であって、
 前記心材の化学成分を備えた心材用塊と、前記ろう材の化学成分を備えたろう材用塊とを重ね合わせてクラッド塊を作製し、
 前記クラッド塊を作製する前後のいずれかにおいて前記心材用塊を510℃未満の温度に加熱して均質化処理を行い、または、前記クラッド塊を作製する前後のいずれにおいても均質化処理を行わず、
 前記クラッド塊を400℃以上500℃以下の温度に加熱して、開始温度が前記温度範囲となる条件で前記クラッド塊に熱間圧延を行うことにより前記心材と前記ろう材とが積層されたクラッド材を作製し、
 85%以上の圧下率で前記クラッド材に冷間圧延を行い、
 150℃から保持温度に到達するまでの平均昇温速度をr 1(℃/時間)、保持温度をT(℃)、保持時間をt(時間)、保持温度から150℃に到達するまでの平均冷却速度をr 2(℃/時間)とした場合に、下記式(1)~(3)を満足する条件で前記クラッド材に焼鈍を行う、
熱交換器フィン用ブレージングシートの製造方法。
 150≦T≦300・・・(1)
 250≦(T-150) 2/r 1+T・t+(T-150) 2/r 2≦2500 ・・・(2)
 r 2≦100 ・・・(3)
[請求項7]
 前記焼鈍を行った後、更に、40%以下の圧下率で前記クラッド材に第2冷間圧延を行う、請求項6に記載の熱交換器フィン用ブレージングシートの製造方法。
[請求項8]
 前記焼鈍を行った後、更に、60%以下の圧下率で前記クラッド材に第2冷間圧延を行い、保持温度T 2(℃)が前記焼鈍における保持温度T(℃)以下となる条件で前記クラッド材に第2焼鈍を行う、請求項6に記載の熱交換器フィン用ブレージングシートの製造方法。

図面

[ 図 1]

[ 図 2]