Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2019008785) ROTARY TOOL AND JOINING METHOD
Document

明 細 書

発明の名称 回転ツール及び接合方法

技術分野

0001  

背景技術

0002   0003   0004  

先行技術文献

特許文献

0005  

発明の概要

発明が解決しようとする課題

0006   0007  

課題を解決するための手段

0008   0009   0010   0011  

発明の効果

0012  

図面の簡単な説明

0013  

発明を実施するための形態

0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028  

実施例

0029   0030   0031   0032   0033   0034   0035   0036   0037   0038  

符号の説明

0039  

請求の範囲

1   2   3   4   5  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18  

明 細 書

発明の名称 : 回転ツール及び接合方法

技術分野

[0001]
 本発明は、摩擦攪拌用の回転ツール及び接合方法に関する。

背景技術

[0002]
 摩擦攪拌接合に用いられる回転ツールとして、ショルダ部と、ショルダ部から垂下する攪拌ピンとを備えたものが知られている。当該回転ツールは、ショルダ部の下端面を金属部材に押し込んだ状態で摩擦攪拌接合を行うというものである。ショルダ部を金属部材に押し込むことにより塑性流動材を押えてバリの発生を抑制することができる。しかし、接合の高さ位置が変化すると欠陥が発生しやすく、凹溝が大きくなるとともにバリが多く発生するという問題がある。
[0003]
 一方、攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、金属部材同士の突合部に回転した攪拌ピンを挿入し、攪拌ピンのみを金属部材に接触させた状態で摩擦攪拌接合を行う本接合工程を含むことを特徴とする摩擦攪拌接合方法が知られている(特許文献1)。当該従来技術によれば、攪拌ピンの外周面には螺旋溝が刻設されており、攪拌ピンのみを被接合部材に接触させつつ基端部を露出させた状態で摩擦攪拌接合を行うため、接合の高さ位置が変化しても欠陥の発生を抑制することができるとともに、摩擦攪拌装置への負荷も軽減することができる。しかし、ショルダ部で塑性流動材を押えないため、金属部材の表面の凹溝が大きくなるとともに、接合表面粗さが大きくなるという問題がある。また、凹溝の脇に膨出部(接合前に比べて金属部材の表面が膨らむ部位)が形成されるという問題がある。
[0004]
 他方、特許文献2には、ショルダ部と、ショルダ部から垂下する攪拌ピンとを備えた回転ツールが記載されている。ショルダ部及び攪拌ピンの外周面にはそれぞれテーパー面が形成されている。ショルダ部のテーパー面には、平面視渦巻き状の溝が形成されている。当該溝の断面形状は半円状になっている。テーパー面を設けることにより、金属部材の厚さや接合の高さ位置が変化しても安定して接合することができる。また、当該溝に塑性流動材が入り込むことにより、塑性流動材の流れを制御して好適な塑性化領域を形成できるというものである。

先行技術文献

特許文献

[0005]
特許文献1 : 特開2013-39613号公報
特許文献2 : 特許第4210148号公報

発明の概要

発明が解決しようとする課題

[0006]
 しかし、特許文献2の従来技術であると、塑性流動材がテーパー面の溝の内部に入り込んでしまうため、溝が機能しなくなるという問題がある。また、当該溝に塑性流動材が入り込むと、塑性流動材が溝に付着した状態で摩擦攪拌されるため、被接合金属部材と付着物とが擦れ合って接合品質が低下するという問題がある。さらに、被接合金属部材の表面が粗くなり、バリが多くなるとともに、金属部材の表面の凹溝も大きくなるという問題がある。
[0007]
 このような観点から、本発明は、金属部材の表面の凹溝を小さくすることができるとともに、接合表面粗さを小さくすることができる回転ツール及び接合方法を提供することを課題とする。

課題を解決するための手段

[0008]
 このような課題を解決するために本発明は、基端側ピンと、先端側ピンとを備える摩擦攪拌用の回転ツールであって、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されていることを特徴とする。
[0009]
 また、本発明は、一対の金属部材の端面同士を突き合わせて形成された突合せ部を回転ツールを用いて摩擦攪拌接合する接合方法であって、前記回転ツールは、基端側ピンと、先端側ピンとを備え、前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、前記基端側ピンの外周面には階段状の段差部が形成されており、前記段差部の段差底面で塑性流動材を押えながら摩擦攪拌を行うことを特徴とする。
[0010]
 かかる接合方法によれば、テーパー角度の大きい基端側ピンの外周面で金属部材を押えることができるため、接合表面の凹溝を小さくすることができるとともに、凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。階段状の段差部は浅く、かつ、出口が広いため、基端側ピンで金属部材を押えても基端側ピンの外周面に塑性流動材が付着し難い。このため、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。また、先端側ピンを備えることにより深い位置まで容易に挿入することができる。
[0011]
 また、前記基端側ピンのテーパー角度は135~160°になっていることが好ましい。また、前記段差部の段差側面の高さは0.1~0.4mmになっていることが好ましい。また、前記段差部の段差底面と段差側面とでなす角度は85~120°になっていることが好ましい。かかる接合方法によれば、金属部材の表面の凹溝をより小さくすることができるとともに、接合表面粗さをより小さくすることができる。

発明の効果

[0012]
 本発明に係る接合方法によれば、金属部材の表面の凹溝を小さくすることができるとともに、接合表面粗さを小さくすることができる。

図面の簡単な説明

[0013]
[図1] 本発明の実施形態に係る回転ツールを示す側面図である。
[図2] 回転ツールの拡大断面図である。
[図3] 本発明の実施形態に係る接合方法を示す斜視図である。
[図4] 本発明の実施形態に係る接合方法を示す断面図である。
[図5] 従来のショルダレス回転ツールを示す概念図である。
[図6] 従来の回転ツールを示す概念図である。
[図7] 回転ツールの第一変形例を示す断面図である。
[図8] 回転ツールの第二変形例を示す断面図である。
[図9] 回転ツールの第三変形例を示す断面図である。
[図10] 実施例1の条件を示す表である。
[図11] 実施例1の結果を示すグラフである。
[図12] 実施例2の条件を示す表である。
[図13] 実施例2の比較例の回転ツールを示す側面図である。
[図14] 実施例2の結果を示すグラフである。
[図15] 実施例3の条件を示す表である。
[図16] 実施例3-1の結果を示すグラフである。
[図17] 実施例3-2の結果を示すグラフである。
[図18] 実施例3-3の結果を示すグラフである。

発明を実施するための形態

[0014]
 本発明の実施形態について、適宜図面を参照しながら説明する。図1に示すように、回転ツール1は、摩擦攪拌接合に用いられるツールである。回転ツール1は、例えば工具鋼で形成されている。回転ツール1は、基軸部2と、基端側ピン3と、先端側ピン4とで主に構成されている。基軸部2は、円柱状を呈し、摩擦攪拌装置の主軸に接続される部位である。回転ツール1の回転軸は、鉛直方向に対して傾けてもよいが、本実施形態では鉛直方向と一致している。また、鉛直方向に垂直な面を水平面と定義する。
[0015]
 基端側ピン3は、基軸部2に連続し、先端に向けて先細りになっている。基端側ピン3は、円錐台形状を呈する。基端側ピン3のテーパー角度Aは適宜設定すればよいが、例えば、135~160°になっている。テーパー角度Aが135°未満であるか、又は、160°を超えると摩擦攪拌後の接合表面粗さが大きくなる。テーパー角度Aは、後記する先端側ピン4のテーパー角度Bよりも大きくなっている。図2に示すように、基端側ピン3の外周面には、階段状の段差部10が高さ方向の全体に亘って形成されている。段差部10は、右回り又は左回りで螺旋状に形成されている。つまり、段差部10は、平面視して螺旋状であり、側面視すると階段状になっている。本実施形態では、回転ツールを右回転させるため、段差部10は基端側から先端側に向けて左回りに設定している。
[0016]
 なお、回転ツールを左回転させる場合は、段差部10を基端側から先端側に向けて右回りに設定することが好ましい。これにより、段差部10によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。段差部10は、段差底面10aと、段差側面10bとで構成されている。隣り合う段差部10の各頂点10c,10cの距離X1(水平方向距離)は、後記する段差角度C及び段差側面10bの高さY1に応じて適宜設定される。
[0017]
 段差側面10bの高さY1は適宜設定すればよいが、例えば、0.1~0.4mmで設定されている。高さY1が0.1mm未満であると接合表面粗さが大きくなる。一方、高さY1が0.4mmを超えると接合表面粗さが大きくなる傾向があるとともに、有効段差部数(被接合金属部材と接触している段差部10の数)も減少する。
[0018]
 段差底面10aと段差側面10bとでなす段差角度Cは適宜設定すればよいが、例えば、85~120°で設定されている。段差底面10aは、本実施形態では水平面と平行になっている。段差底面10aは、ツールの回転軸から外周方向に向かって水平面に対して-5°~15°内の範囲で傾斜していてもよい(マイナスは水平面に対して下方、プラスは水平面に対して上方)。距離X1、段差側面10bの高さY1、段差角度C及び水平面に対する段差底面10aの角度は、摩擦攪拌を行う際に、塑性流動材が段差部10の内部に滞留して付着することなく外部に抜けるとともに、段差底面10aで塑性流動材を押えて接合表面粗さを小さくすることができるように適宜設定する。
[0019]
 先端側ピン4は、基端側ピン3に連続して形成されている。先端側ピン4は円錐台形状を呈する。先端側ピン4の先端は平坦面になっている。先端側ピン4のテーパー角度Bは、基端側ピン3のテーパー角度よりも小さくなっている。先端側ピン4の外周面には、螺旋溝11が刻設されている。螺旋溝11は、右回り、左回りのどちらでもよいが、本実施形態では回転ツール1を右回転させるため、基端側から先端側に向けて左回りに刻設されている。
[0020]
 なお、回転ツールを左回転させる場合は、螺旋溝11を基端側から先端側に向けて右回りに設定することが好ましい。これにより、螺旋溝11によって塑性流動材が先端側に導かれるため、被接合金属部材の外部に溢れ出る金属を低減することができる。螺旋溝11は、螺旋底面11aと、螺旋側面11bとで構成されている。隣り合う螺旋溝11の頂点11c,11cの距離(水平方向距離)を長さX2とする。螺旋側面11bの高さを高さY2とする。螺旋底面11aと、螺旋側面11bとで構成される螺旋角度Dは例えば、45~90°で形成されている。螺旋溝11は、被接合金属部材と接触することにより摩擦熱を上昇させるとともに、塑性流動材を先端側に導く役割を備えている。
[0021]
 次に、本発明に係る接合方法について説明する。本実施形態に係る接合方法では、突合せ工程と、摩擦攪拌工程とを行う。突合せ工程は、図3に示すように、金属部材20,20の各端面20a,20a同士を突き合わせる工程である。金属部材20,20の各表面及び各裏面は面一になる。
[0022]
 摩擦攪拌工程では、回転ツール1を用いて突合せ部J1を摩擦攪拌接合する工程である。摩擦攪拌工程では、右回転させた回転ツール1を突合せ部J1に挿入し、突合せ部J1をなぞるようにして相対移動させる。回転ツール1の移動軌跡には塑性化領域Wが形成される。図4に示すように、摩擦攪拌工程では、回転ツール1の基端側ピン3の外周面で金属部材20,20の表面20b,20bを押えながら摩擦攪拌接合を行う。回転ツール1の挿入深さは、少なくとも基端側ピン3の一部が金属部材20の表面20bと接触するように設定する。本実施形態では、基端側ピン3の外周面の高さ方向の中央部あたりが金属部材20の表面20bと接触するように挿入深さを設定している。
[0023]
 ここで、図5に示すように、従来のショルダレス回転ツール100であると、ショルダ部で被接合金属部材110の表面を押えないため凹溝(被接合金属部材の表面と塑性化領域の表面とで構成される凹溝)が大きくなるとともに、接合表面粗さが大きくなるという問題がある。また、凹溝の脇に膨出部(接合前に比べて被接合金属部材の表面が膨らむ部位)が形成されるという問題がある。一方、図6の回転ツール101のように、回転ツール101のテーパー角度βをショルダレス回転ツール100のテーパー角度αよりも大きくすると、ショルダレス回転ツール100に比べて被接合金属部材110の表面を押えることはできるため、凹溝は小さくなり、膨出部も小さくなる。しかし、下向きの塑性流動が強くなるため、塑性化領域の下部にキッシングボンドが形成されやすくなる。
[0024]
 これに対し、本実施形態の回転ツール1は、基端側ピン3と、基端側ピン3のテーパー角度Aよりもテーパー角度が小さい先端側ピン4を備えた構成になっている。これにより、金属部材20,20に回転ツール1を挿入しやすくなる。また、先端側ピン4のテーパー角度Bが小さいため、金属部材20,20の深い位置まで回転ツール1を容易に挿入することができる。また、先端側ピン4のテーパー角度Bが小さいため、回転ツール101に比べて下向きの塑性流動を抑えることができる。このため、塑性化領域Wの下部にキッシングボンドが形成されるのを防ぐことができる。一方、基端側ピン3のテーパー角度Aは大きいため、従来の回転ツールに比べ、被接合金属部材の厚さや接合の高さ位置が変化しても安定して接合することができる。
[0025]
 また、基端側ピン3の外周面で塑性流動材を押えることができるため、接合表面に形成される凹溝を小さくすることができるとともに、凹溝の脇に形成される膨出部を無くすか若しくは小さくすることができる。また、階段状の段差部10は浅く、かつ、出口が広いため、塑性流動材を段差底面10aで押さえつつ塑性流動材が段差部10の外部に抜けやすくなっている。そのため、基端側ピン3で塑性流動材を押えても基端側ピン3の外周面に塑性流動材が付着し難い。よって、接合表面粗さを小さくすることができるとともに、接合品質を好適に安定させることができる。
[0026]
 本発明の回転ツール1は、適宜設計変更が可能である。図7は、本発明の回転ツールの第一変形例を示す側面図である。図7に示すように、第一変形例に係る回転ツール1Aでは、段差部10の段差底面10aと段差側面10bとのなす段差角度Cが85°になっている。段差底面10aは、水平面と平行である。このように、段差底面10aは水平面と平行であるとともに、段差角度Cは、摩擦攪拌中に段差部10内に塑性流動材が滞留して付着することなく外部に抜ける範囲で鋭角としてもよい。
[0027]
 図8は、本発明の回転ツールの第二変形例を示す側面図である。図8に示すように、第二変形例に係る回転ツール1Bでは、段差部10の段差角度Cが115°になっている。段差底面10aは水平面と平行になっている。このように、段差底面10aは水平面と平行であるとともに、段差部10として機能する範囲で段差角度Cが鈍角となってもよい。
[0028]
 図9は、本発明の回転ツールの第三変形例を示す側面図である。図9に示すように、段差底面10aがツールの回転軸から外周方向に向かって水平面に対して10°上方に傾斜している。段差側面10bは、鉛直面と平行になっている。このように、摩擦攪拌中に塑性流動材を押さえることができる範囲で、段差底面10aがツールの回転軸から外周方向に向かって水平面よりも上方に傾斜するように形成されていてもよい。上記の回転ツールの第一~第三変形例によっても、本実施形態と同等の効果を奏することができる。
実施例
[0029]
 次に、本発明の実施例について説明する。実施例では、実施例1,2,3と3種類の試験を行って、摩擦攪拌工程後の接合表面粗さを計測した。
[0030]
[実施例1]
 実施例1では、単一の金属部材(アルミニウム合金:A5052-H34)の表面から回転ツール1を挿入し、所定距離相対移動させて摩擦攪拌後に発生した塑性化領域に沿って、表面の粗さRz(μm)を表面粗さ計(本体:サーフコム1400D,制御器:KA9801CF)で計測した。計測条件は、JIS01に準じて測定長さ:5mm、測定速度:0.6mm/sとし、カットオフ種別:ガウシアン、カットオフ波長:λs=0.8mmとした。金属部材の幅は100mmとし、長さは300mmとし、板厚は2mmとした。回転ツール1の回転数は5000rpmとし、接合速度は500mm/minとした。回転ツール1の挿入深さ(回転ツール1の先端から金属部材の表面までの距離)は1.8mmとした。段差部10の段差角度Cは90°とした。先端側ピン4のテーパー角度Bは75°とした。先端側ピン4の螺旋溝11(図2参照)の距離X2は0.18mmとし、高さY2は0.22mmとした。先端側ピン4の長さは1mmとし、先端の直径は2mmとした(以上が基本条件)。
[0031]
 図10に示すように、実施例1では、回転ツール1の基端側ピン3のテーパー角度Aを105°、120°、135°、142.5°、150°、157.5°、165°と変化させて、テーパー角度と接合表面粗さとの相関関係を調べた。距離X1が概ね一定となるように設定し、このときの段差部10の段差側面10bの高さY1は図10に示すとおりである。つまり、テーパー角度Aが大きくなるにつれて段差側面10bの高さY1は小さくなる。
[0032]
 図11に示すように、基端側ピン3のテーパー角度Aが135°~160°であると、表面接合粗さが小さくなることがわかった。テーパー角度Aが135°未満であると、接合表面粗さが大きくなる傾向になることがわかった。テーパー角度Aが135°未満であると、ショルダレスツールに近い形態となるため、塑性流動材を押さえる作用がなくなり、接合表面粗さが大きくなると考えられる。一方、テーパー角度Aが160°を超えると、高さY1が小さくなり、段差部10の段差が小さくなる。つまり、段差部10の機能が低下して、接合表面粗さが大きくなると考えられる。
[0033]
[実施例2]
 実施例2では、図12に示すように、テーパー角度Aを150°で固定し、段差側面10bの高さY1を0.05mm、0.10mm、0.18mm、0.25mm、0.33mm、0.40mmと変化させて、段差側面10bの高さY1と接合表面粗さとの相関関係を調べた。テーパー角度Aと高さY1を除く他の条件は、実施例1の基本条件と同じである。
[0034]
 また、実施例2では、図13に示すように、特許文献2に示す比較例の回転ツール200を用いて摩擦攪拌を行った。比較例の回転ツール200は、基端側ピン203と、先端側ピン204とを備えている。基端側ピン203のテーパー角度は、先端側ピン204のテーパー角度よりも大きくなっている。基端側ピン203の外周面には、螺旋状の溝13が形成されている。溝13の断面形状は略半円状になっている。溝13の曲率半径は0.5mmとした。溝13の深さは0.3mmとし、隣り合う溝13,13の距離は1.2mmとした。先端側ピン204の外周面には螺旋溝11が形成されている。
[0035]
 図14に示すように、段差側面10bの高さY1が0.10~0.40mmであると、接合表面粗さが小さくなることがわかった。比較例の回転ツール200では、接合表面粗さが55μmであった。高さY1が0.05mmであると接合表面粗さが著しく大きくなることがわかった。高さY1が0.10mm未満であると、段差がない状態に近づくため、段差部10に基づく塑性流動量が減少し接合表面粗さが大きくなると考えられる。
[0036]
 一方、高さY1が0.40mmを超えると接合表面粗さが大きくなる傾向になる。これは、高さY1が大きくなると、必然的に段差底面10aの距離X1も大きくなる。例えば、テーパー角度Aが150°を超えると距離X1の増加は顕著になる。段差底面10a
の距離X1が大きくなると、同じ挿入深さにおける有効段差部数(被接合金属部材と接触している段差部の数)が減少するため、段差部10に基づく塑性流動量が減少し接合表面粗さが大きくなると考えられる。なお、被接合金属部材に対する回転ツール1の押圧力を2600N,2800N,3000Nと変化させて施行したが、押圧力での差はほとんど見られなかった。
[0037]
[実施例3]
 実施例3では、図15に示すように、段差角度Cを変化させて、段差角度Cと接合表面粗さとの相関関係を調べた。実施例3では、テーパー角度Aを150°とした。段差角度Cは、60°、75°、85°、90°、105°、120°、135°と変化させた。また、段差側面10bの高さY1を0.1mmとした場合を実施例3-1とし、高さY1を0.18mmとした場合を実施例3-2とし、高さY1を0.25mmとした場合を実施例3-3とした。その他の条件は、実施例1の基本条件と同じである。
[0038]
 図16~18に示すように、段差角度Cを85°~120°に設定すると接合表面粗さが小さくなることがわかった。段差角度Cが85°未満になると、段差部10の内部に塑性流動材が溜まりやすくなり、段差部10の内部に塑性流動材が付着し段差部10として機能しなくなる。また、段差部10に塑性流動材が付着すると、当該塑性流動材と被接合金属部材が損傷するおそれがある。一方、段差角度Cが120°を超えると塑性流動材を押さえることができなくなるため、接合表面粗さが大きくなると考えられる。また、実施例3-1,3-2,3-3では、実施例3-3の接合表面粗さが最も小さかった。つまり、段差側面10bの高さY1が少なくとも0.1~0.25mmの範囲で、高さY1が大きくなるにつれて、接合表面粗さが小さくなる傾向があることがわかった。

符号の説明

[0039]
 1   回転ツール
 2   基軸部
 3   基端側ピン
 4   先端側ピン
 10  段差部
 10a 段差底面
 10b 段差側面
 11  螺旋溝
 A   テーパー角度(基端側ピンの)
 B   テーパー角度
 C   段差角度
 D   螺旋溝角度
 J1  突合せ部
 X1  距離(基端側ピンの)
 X2  距離
 Y1  高さ(段差側面の)
 Y2  高さ

請求の範囲

[請求項1]
 基端側ピンと、先端側ピンとを備える摩擦攪拌用の回転ツールであって、
 前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、
 前記基端側ピンの外周面には階段状の段差部が形成されていることを特徴とする回転ツール。
[請求項2]
 前記基端側ピンのテーパー角度は135~160°になっていることを特徴とする請求項1に記載の回転ツール。
[請求項3]
 前記段差部の段差側面の高さは0.1~0.4mmになっていることを特徴とする請求項1又は請求項2に記載の回転ツール。
[請求項4]
 前記段差部の段差底面と段差側面とでなす角度は85~120°になっていることを特徴とする請求項1に記載の回転ツール。
[請求項5]
 一対の金属部材の端面同士を突き合わせて形成された突合せ部を回転ツールを用いて摩擦攪拌接合する接合方法であって、
 前記回転ツールは、
 基端側ピンと、先端側ピンとを備え、
 前記基端側ピンのテーパー角度は、前記先端側ピンのテーパー角度よりも大きくなっており、
 前記基端側ピンの外周面には階段状の段差部が形成されており、
 前記段差部の段差底面で塑性流動材を押えながら摩擦攪拌を行うことを特徴とする接合方法。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]

[ 図 16]

[ 図 17]

[ 図 18]