Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2019004184) PLASMA TREATMENT DEVICE
Document

明 細 書

発明の名称 プラズマ処理装置

技術分野

0001  

背景技術

0002   0003   0004   0005   0006  

先行技術文献

特許文献

0007  

発明の概要

0008   0009  

図面の簡単な説明

0010  

発明を実施するための形態

0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109  

符号の説明

0110  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20  

図面

1   2A   2B   3   4   5A   5B   5C   5D   6A   6B   6C   6D   7   8   9   10   11   12   13   14   15A   15B   15C   15D   16A   16B   16C   16D   17   18   19   20   21   22   23   24   25   26   27   28A   28B   28C   29A   29B   29C   29D   29E  

明 細 書

発明の名称 : プラズマ処理装置

技術分野

[0001]
 本発明は、プラズマ処理装置に関する。

背景技術

[0002]
 2つの電極の間に高周波を印加することによってプラズマを発生し該プラズマによって基板を処理するプラズマ処理装置がある。このようなプラズマ処理装置は、2つの電極の面積比および/またはバイアスによってスパッタリング装置として動作したり、エッチング装置として動作したりしうる。スパッタリング装置として構成されたプラズマ処理装置は、ターゲットを保持する第1電極と、基板を保持する第2電極とを有し、第1電極と第2電極との間に高周波が印加され、第1電極と第2電極との間(ターゲットと基板との間)にプラズマが生成される。プラズマの生成によってターゲットの表面にセルフバイアス電圧が発生し、これによってターゲットにイオンが衝突し、ターゲットからそれを構成する材料の粒子が放出される。
[0003]
 特許文献1には、接地されたチャンバと、インピーダンス整合回路網を介してRF発生源に接続されたターゲット電極と、基板電極同調回路を介して接地された基板保持電極とを有するスパッタリング装置が記載されている。
[0004]
 特許文献1に記載されたようなスパッタリング装置では、基板保持電極の他、チャンバがアノードとして機能しうる。セルフバイアス電圧は、カソードとして機能しうる部分の状態およびアノードとして機能しうる部分の状態に依存しうる。よって、基板保持電極の他にチャンバもアノードとして機能する場合、セルバイアス電圧は、チャンバのうちアノードとして機能する部分の状態にも依存して変化しうる。セルフバイアス電圧の変化は、プラズマ電位の変化をもたらし、プラズマ電位の変化は、形成される膜の特性に影響を与えうる。
[0005]
 スパッタリング装置によって基板に膜を形成すると、チャンバの内面にも膜が形成されうる。これによってチャンバのうちアノードとして機能しうる部分の状態が変化しうる。そのため、スパッタリング装置を継続して使用すると、チャンバの内面に形成される膜によってセルフバイアス電圧が変化し、プラズマ電位も変化しうる。よって、従来は、スパッタリング装置を長期にわたって使用した場合において、基板の上に形成される膜の特性を一定に維持することが難しかった。
[0006]
 同様に、エッチング装置が長期にわたって使用された場合においても、チャンバの内面に形成される膜によってセルフバイアス電圧が変化し、これによってプラズマ電位も変化しうるので、基板のエッチング特性を一定に維持することが難しかった。

先行技術文献

特許文献

[0007]
特許文献1 : 特公昭55-35465号公報

発明の概要

[0008]
 本発明は、上記の課題認識に基づいてなされたものであり、長期間の使用においてプラズマ電位を安定させるために有利な技術を提供する。
 本発明の第1の側面は、プラズマ処理装置に係り、前記プラズマ処理装置は、第1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、基板を保持する基板保持部と、前記基板保持部を回転させる駆動機構と、を備え、前記高周波電源は、前記高周波の周波数を変更可能であり、前記周波数の変更によって前記関係が調整される。
[0009]
 本発明の第2の側面は、プラズマ処理方法に係り、前記プラズマ処理方法は、1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、基板を保持する基板保持部と、前記基板保持部を回転させる駆動機構と、を備えるプラズマ処理装置において基板を処理するプラズマ処理方法であって、前記関係が調整されるように前記高周波電源が発生する周波数を調整する工程と、前記工程の後に、前記基板を前記駆動機構によって回転させながら処理する工程とを含む。

図面の簡単な説明

[0010]
[図1] 本発明の第1実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図2A] バランの構成例を示す図。
[図2B] バランの他の構成例を示す図。
[図3] バラン103の機能を説明する図。
[図4] 電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係を例示する図。
[図5A] 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
[図5B] 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
[図5C] 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
[図5D] 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
[図6A] 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
[図6B] 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
[図6C] 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
[図6D] 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。
[図7] Rp-jXpの確認方法を例示する図。
[図8] 本発明の第2実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図9] 本発明の第3実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図10] 本発明の第4実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図11] 本発明の第5実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図12] 本発明の第6実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図13] 本発明の第7実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図14] 本発明の第7実施形態のバランの機能を説明する図。
[図15A] 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
[図15B] 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
[図15C] 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
[図15D] 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
[図16A] 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
[図16B] 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
[図16C] 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
[図16D] 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。
[図17] 本発明の第8実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図18] 本発明の第9実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図19] 本発明の第10実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図20] 本発明の第11実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図21] 本発明の第12実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図22] 本発明の第9実施形態のプラズマ処理装置1において基板に形成された膜の正規化された厚さ分布を示す図。
[図23] 本発明の第9実施形態のプラズマ処理装置1において高周波の周波数を変化させた場合における第1電極の電圧(第1電圧)および第2電極の電圧(第2電圧)の変化を例示する図。
[図24] 本発明の第13実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図25] 本発明の第14実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図26] 本発明の第15実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図27] 本発明の第16実施形態のプラズマ処理装置1の構成を模式的に示す図。
[図28A] 本発明の第9実施形態のプラズマ処理装置1においてTS距離を120mmとしたときに基板に形成された膜の厚さ分布を例示する図。
[図28B] 本発明の第9実施形態のプラズマ処理装置1においてTS距離を105mmとしたときに基板に形成された膜の厚さ分布を例示する図。
[図28C] 本発明の第9実施形態のプラズマ処理装置1においてTS距離を100mmとしたときに基板に形成された膜の厚さ分布を例示する図。
[図29A] 本発明の第9実施形態のプラズマ処理装置1において、高周波の周波数を12.56MHzとしたときに基板に形成された膜の厚さ分布を例示する図。
[図29B] 本発明の第9実施形態のプラズマ処理装置1において、高周波の周波数を13.06MHzとしたときに基板に形成された膜の厚さ分布を例示する図。
[図29C] 本発明の第9実施形態のプラズマ処理装置1において、高周波の周波数を13.56MHzとしたときに基板に形成された膜の厚さ分布を例示する図。
[図29D] 本発明の第9実施形態のプラズマ処理装置1において、高周波の周波数を14.06MHzとしたときに基板に形成された膜の厚さ分布を例示する図。
[図29E] 本発明の第9実施形態のプラズマ処理装置1において、高周波の周波数を14.56MHzとしたときに基板に形成された膜の厚さ分布を例示する図。

発明を実施するための形態

[0011]
 以下、添付図面を参照しながら本発明をその例示的な実施形態を通して説明する。
[0012]
 図1には、本発明の第1実施形態のプラズマ処理装置1の構成が模式的に示されている。第1実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。プラズマ処理装置1は、バラン(平衡不平衡変換回路)103と、真空容器110と、第1電極106と、第2電極111とを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極111とを備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。第1電極106は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第2電極111は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。
[0013]
 バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。真空容器110は、導体で構成され、接地されている。
[0014]
 第1実施形態では、第1電極106は、カソードであり、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。また、第1実施形態では、第2電極111は、アノードであり、基板112を保持する。第1実施形態のプラズマ処理装置1は、ターゲット109のスパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第1電極106は、第1平衡端子211に電気的に接続され、第2電極111は、第2平衡端子212に電気的に接続されている。第1電極106と第1平衡端子211とが電気的に接続されていることは、第1電極106と第1平衡端子211との間で電流が流れるように第1電極106と第1平衡端子211との間に電流経路が構成されていることを意味する。同様に、この明細書において、aとbとが電気的に接続されているとは、aとbとの間で電流が流れるようにaとbとの間に電流経路が構成されることを意味する。
[0015]
 上記の構成は、第1電極106が第1端子251に電気的に接続され、第2電極111が第2端子252に電気的に接続され、第1端子251が第1平衡端子211に電気的に接続され、第2端子252が第2平衡端子212に電気的に接続された構成としても理解されうる。
[0016]
 第1実施形態では、第1電極106と第1平衡端子211(第1端子251)とがブロッキングキャパシタ104を介して電気的に接続されている。ブロッキングキャパシタ104は、第1平衡端子211と第1電極106との間(あるいは、第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、後述のインピーダンス整合回路102が、第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1電極106は、絶縁体107を介して真空容器110によって支持されうる。第2電極111は、絶縁体108を介して真空容器110によって支持されうる。あるいは、第2電極111と真空容器110との間に絶縁体108が配置されうる。
[0017]
 プラズマ処理装置1は、高周波電源101と、高周波電源101とバラン103との間に配置されたインピーダンス整合回路102とを更に備えうる。高周波電源101は、インピーダンス整合回路102を介してバラン103の第1不平衡端子201と第2不平衡端子202との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。換言すると、高周波電源101は、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極111との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。あるいは、高周波電源101は、インピーダンス整合回路102およびバラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給するものとしても理解されうる。
[0018]
 真空容器110の内部空間には、真空容器110に設けられた不図示のガス供給部を通してガス(例えば、Ar、KrまたはXeガス)が供給される。また、第1電極106と第2電極111との間には、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して高周波電源101によって高周波が供給される。これにより、第1電極106と第2電極111との間にプラズマが生成され、ターゲット109の表面にセルフバイアス電圧が発生し、プラズマ中のイオンがターゲット109の表面に衝突し、ターゲット109からそれを構成する材料の粒子が放出される。そして、この粒子によって基板112の上に膜が形成される。
[0019]
 図2Aには、バラン103の一構成例が示されている。図2Aに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。
[0020]
 図2Bには、バラン103の他の構成例が示されている。図2Bに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。また、図2Bに示されたバラン103は、第1平衡端子211と第2平衡端子212との間に接続された第3コイル223および第4コイル224を更に有し、第3コイル223および第4コイル224は、第3コイル223と第4コイル224との接続ノード213の電圧を第1平衡端子211の電圧と第2平衡端子212の電圧との中点とするように構成されている。第3コイル223および第4コイル224は、同一巻き数のコイルであり、鉄心を共有する。接続ノード213は、接地されてもよいし、真空容器110に接続されてもよいし、フローティングにされてもよい。
[0021]
 図3を参照しながらバラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
[0022]
  ISO[dB]=20log(I3/I2’)
 図3において、Rp-jXpは、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極106および第2電極111の側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104のリアクタンスを含む)を示している。Rpは抵抗成分、-Xpはリアクタンス成分を示している。また、図3において、Xは、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
[0023]
 図4には、電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。本発明者は、バラン103を介して高周波電源101から第1電極106と第2電極111との間に高周波を供給する構成、特に、該構成において1.5≦X/Rp≦5000を満たすことが、真空容器110の内部空間(第1電極106と第2電極111との間の空間)に形成されるプラズマの電位(プラズマ電位)を真空容器110の内面の状態に対して鈍感にするために有利であることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、-10.0dB≧ISO≧-80dBに相当する。
[0024]
 図5A~5Dには、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。図5Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。図5Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。図5Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。図5Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。図5A~図5Dより、1.5≦X/Rp≦5000を満たすことが、真空容器110の内面が種々の状態においてプラズマ電位を安定させるために有利であることが理解される。
[0025]
 図6A~図6Dには、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。図6Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。図6Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。図6Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。図6Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。図6A~図6Dより、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面の状態に依存してプラズマ電位が変化しうることが理解される。
[0026]
 ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.0、X/Rp=0.5)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極106と第2電極111との間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、図6A~図6Dに例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成することが有利である。
[0027]
 図7を参照しながらRp-jXp(実際に知りたいものはRpのみ)の決定方法を例示する。まず、プラズマ処理装置1からバラン103を取り外し、インピーダンス整合回路102の出力端子230を本体10の第1端子251(ブロッキングキャパシタ104)に接続する。また、本体10の第2端子252(第2電極111)を接地する。この状態で高周波電源101からインピーダンス整合回路102を通して本体10の第1端子251に高周波を供給する。図7に示された例では、インピーダンス整合回路102は、等価的に、コイルL1、L2および可変キャパシタVC1、VC2で構成される。可変キャパシタVC1、VC2の容量値を調整することによってプラズマを発生させることができる。プラズマが安定した状態において、インピーダンス整合回路102のインピーダンスは、プラズマが発生しているときの本体10の側(第1電極106および第2電極111の側)のインピーダンスRp-jXpに整合している。このときのインピーダンス整合回路102のインピーダンスは、Rp+jXpである。
[0028]
 よって、インピーダンスが整合したときのインピーダンス整合回路102のインピーダンスRp+jXpに基づいて、Rp-jXp(実際に知りたいものはRpのみ)を得ることができる。Rp-jXpは、その他、例えば、設計データに基づいてシミュレーションによって求めることができる。
[0029]
 このようにして得られたRpに基づいて、X/Rpを特定することができる。例えば、1.5≦X/Rp≦5000を満たすように、Rpに基づいて、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)Xを決定することができる。
[0030]
 図8には、本発明の第2実施形態のプラズマ処理装置1の構成が模式的に示されている。第2実施形態のプラズマ処理装置1は、基板112をエッチングするエッチング装置として動作しうる。第2実施形態では、第1電極106は、カソードであり、基板112を保持する。また、第2実施形態では、第2電極111は、アノードである。第2実施形態のプラズマ処理装置1では、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第2実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。
[0031]
 図9には、本発明の第3実施形態のプラズマ処理装置1の構成が模式的に示されている。第3実施形態のプラズマ処理装置1は、第1実施形態のプラズマ処理装置1の変形例であり、第2電極111を昇降させる機構および第2電極111を回転させる機構の少なくとも一方を更に備える。図9に示された例では、プラズマ処理装置1は、第2電極111を昇降させる機構および第2電極111を回転させる機構の双方を含む駆動機構114を備える。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。
[0032]
 同様に、第2実施形態のプラズマ処理装置1も、第1電極106を昇降させる機構および第2電極106を回転させる機構の少なくとも一方を更に備えうる。
[0033]
 図10には、本発明の第4実施形態のプラズマ処理装置1の構成が模式的に示されている。第4実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第4実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第3実施形態に従いうる。プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1組を構成する第1電極106および第2電極135と、第2組を構成する第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1組を構成する第1電極106および第2電極135と、第2組を構成する第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
[0034]
 第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
[0035]
 第1組の第1電極106は、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。第1組の第2電極135は、第1電極106の周囲に配置される。第1組の第1電極106は、第1バラン103の第1平衡端子211に電気的に接続され、第1組の第2電極135は、第1バラン103の第2平衡端子212に電気的に接続されている。第2組の第1電極141は、基板112を保持する。第2組の第2電極145は、第1電極141の周囲に配置される。第2組の第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2組の第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
[0036]
 上記の構成は、第1組の第1電極106が第1端子251に電気的に接続され、第1組の第2電極135が第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に電気的に接続された構成として理解されうる。また、上記の構成は、第2組の第1電極141が第3端子451に電気的に接続され、第2組の第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に電気的に接続されているものとして理解されうる。
[0037]
 第1組の第1電極106と第1バラン103の第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104を介して電気的に接続されうる。ブロッキングキャパシタ104は、第1バラン103の第1平衡端子211と第1組の第1電極106との間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、第1インピーダンス整合回路102が、第1バラン103の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1組の第1電極106および第2電極135は、絶縁体132を介して真空容器110によって支持されうる。
[0038]
 第2組の第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第2組の第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第2組の第1電極141および第2電極145は、絶縁体142を介して真空容器110によって支持されうる。
[0039]
 プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102を介して第1バラン103の第1不平衡端子201と第2不平衡端子202との間に高周波を供給する。換言すると、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極135との間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1組の第1電極106および第2電極135は、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
[0040]
 プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。換言すると、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第2組の第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第2組の第1電極141および第2電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
[0041]
 第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1組の第1電極106および第2電極135の側(本体10の側)を見たときのインピーダンスをRp1-jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
[0042]
 また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第2組の第1電極141および第2電極145の側(本体10の側)を見たときのインピーダンスをRp2-jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
[0043]
 図11には、本発明の第5実施形態のプラズマ処理装置1の構成が模式的に示されている。第5実施形態の装置1は、第4実施形態のプラズマ処理装置1に対して駆動機構114、314を追加した構成を有する。駆動機構114は、第1電極141を昇降させる機構および第1電極141を回転させる機構の少なくとも一方を備えうる。駆動機構314は、第2電極145を昇降させる機構を備えうる。
[0044]
 図12には、本発明の第6実施形態のプラズマ処理装置1の構成が模式的に示されている。第6実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第6実施形態として言及しない事項は、第1乃至第5実施形態に従いうる。第6実施形態のプラズマ処理装置1は、複数の第1高周波供給部と、少なくとも1つの第2高周波供給部とを備えている。複数の第1高周波供給部のうちの1つは、第1電極106aと、第2電極135aと、第1バラン103aとを含みうる。複数の第1高周波供給部のうちの他の1つは、第1電極106bと、第2電極135bと、第1バラン103bとを含みうる。ここでは、複数の第1高周波供給部が2つの高周波供給部で構成される例を説明する。また、2つの高周波供給部およびそれに関連する構成要素を添え字a、bで相互に区別する。同様に、2つのターゲットについても、添え字a、bで相互に区別する。
[0045]
 他の観点において、プラズマ処理装置1は、複数の第1バラン103a、103bと、第2バラン303と、真空容器110と、第1電極106aおよび第2電極135aと、第1電極106bおよび第2電極135bと、第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、複数の第1バラン103a、103bと、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1電極106aおよび第2電極135aと、第1電極106bおよび第2電極135bと、第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251a、251b、第2端子252a、252b、第3端子451、第4端子452を有する。
[0046]
 第1バラン103aは、第1不平衡端子201a、第2不平衡端子202a、第1平衡端子211aおよび第2平衡端子212aを有する。第1バラン103aの第1不平衡端子201aおよび第2不平衡端子202aの側には、不平衡回路が接続され、第1バラン103aの第1平衡端子211aおよび第2平衡端子212aの側には、平衡回路が接続される。第1バラン103bは、第1不平衡端子201b、第2不平衡端子202b、第1平衡端子211bおよび第2平衡端子212bを有する。第1バラン103bの第1不平衡端子201bおよび第2不平衡端子202bの側には、不平衡回路が接続され、第1バラン103bの第1平衡端子211bおよび第2平衡端子212bの側には、平衡回路が接続される。
[0047]
 第2バラン303は、第1バラン103a、103bと同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
[0048]
 第1電極106a、106bは、それぞれターゲット109a、109bを保持する。ターゲット109a、109bは、例えば、絶縁体材料または導電体材料でありうる。第2電極135a、135bは、それぞれ第1電極106a、106bの周囲に配置される。第1電極106a、106bは、それぞれ第1バラン103a、103bの第1平衡端子211a、211bに電気的に接続され、第2電極135a、135bは、それぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続されている。
[0049]
 第1電極141は、基板112を保持する。第2電極145は、第1電極141の周囲に配置される。第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
[0050]
 上記の構成は、第1電極106a、106bがそれぞれ第1端子251a、251bに電気的に接続され、第2電極135a、135bがそれぞれ第2端子252a、252bに電気的に接続され、第1端子251a、251bがそれぞれ第1バラン103a、103bの第1平衡端子211a、111bに電気的に接続され、第2端子252a、252bがそれぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続された構成として理解されうる。また、上記の構成は、第1電極141が第3端子451に電気的に接続され、第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に電気的に接続されているものとして理解されうる。
[0051]
 第1電極106a、106bと第1バラン103a、103bの第1平衡端子211a、211b(第1端子251a、251b)とは、それぞれブロッキングキャパシタ104a、104bを介して電気的に接続されうる。ブロッキングキャパシタ104a、104bは、第1バラン103a、103bの第1平衡端子211a、211bと第1電極106a、106bとの間(あるいは、第1バラン103a、103bの第1平衡端子211a、211bと第2平衡端子212a、212bとの間)で直流電流を遮断する。ブロッキングキャパシタ104a、104bを設ける代わりに、第1インピーダンス整合回路102a、102bが、第1バラン103a、103bの第1不平衡端子201a、201bと第2不平衡端子202a、202bとの間を流れる直流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ104a、104bは、第2電極135a、135bと第1バラン103a、103bの第2平衡端子212a、212b(第2端子252a、252b)との間に配置されてもよい。第1電極106a、106bおよび第2電極135a、135bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
[0052]
 第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ304は、第2電極145と第2バラン303の第2平衡端子412(第4端子452)との間に配置されてもよい。第1電極141および第2電極145は、絶縁体142を介して真空容器110によって支持されうる。
[0053]
 プラズマ処理装置1は、複数の第1高周波電源101a、101bと、複数の第1高周波電源101a、101bと複数の第1バラン103a、103bとの間にそれぞれ配置された第1インピーダンス整合回路102a、102bとを備えうる。第1高周波電源101a、101bは、それぞれ第1インピーダンス整合回路102a、102bを介して第1バラン103a、103bの第1不平衡端子201a、201bと第2不平衡端子202a、202bとの間に高周波を供給する。換言すると、第1高周波電源101a、101bは、それぞれ第1インピーダンス整合回路102a、102b、第1バラン103a、103bおよびブロッキングキャパシタ104a、104bを介して、第1電極106a、106bと第2電極135a、135bとの間に高周波を供給する。あるいは、第1高周波電源101a、101bは、第1インピーダンス整合回路102a、102b、第1バラン103a、103bを介して、本体10の第1端子251a、251bと第2端子252a、252bとの間に高周波を供給する。
[0054]
 プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。換言すると、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。
[0055]
 図13には、本発明の第7実施形態のプラズマ処理装置1の構成が模式的に示されている。第7実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第7実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第6実施形態に従いうる。プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1組を構成する第1電極105aおよび第2電極105bと、第2組を構成する第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1組を構成する第1電極105aおよび第2電極105bと、第2組を構成する第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
[0056]
 第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
[0057]
 第1組の第1電極105aは、第1ターゲット109aを保持し、第1ターゲット109aを介して基板112の側の空間と対向する。第1組の第2電極105bは、第1電極105aの隣に配置され、第2ターゲット109bを保持し、第2ターゲット109bを介して基板112の側の空間と対向する。ターゲット109aおよび109bは、例えば、絶縁体材料または導電体材料でありうる。第1組の第1電極105aは、第1バラン103の第1平衡端子211に電気的に接続され、第1組の第2電極105bは、第1バラン103の第2平衡端子212に電気的に接続されている。
[0058]
 第2組の第1電極141は、基板112を保持する。第2組の第2電極145は、第1電極141の周囲に配置される。第2組の第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2組の第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
[0059]
 上記の構成は、第1組の第1電極105aが第1端子251に電気的に接続され、第1組の第2電極105bが第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に接続された構成として理解されうる。また、上記の構成は、第2組の第1電極141が第3端子451に電気的に接続され、第2組の第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に接続されているものとして理解されうる。
[0060]
 第1組の第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104aを介して電気的に接続されうる。ブロッキングキャパシタ104aは、第1バラン103の第1平衡端子211と第1組の第1電極105aとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。第1組の第2電極105bと第1バラン103の第2平衡端子212(第2端子252)とは、ブロッキングキャパシタ104bを介して電気的に接続されうる。ブロッキングキャパシタ104bは、第1バラン103の第2平衡端子212と第1組の第2電極105bとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。第1組の第1電極105a、第2電極105bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
[0061]
 第2組の第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第2組の第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子401と第2不平衡端子402との間を流れる直流電流を遮断するように構成されてもよい。第2組の第1電極141、第2電極145は、それぞれ絶縁体142、146を介して真空容器110によって支持されうる。
[0062]
 プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103、およびブロッキングキャパシタ104a、104bを介して、第1電極105aと第2電極105bとの間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1組の第1電極105aおよび第2電極105bは、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
[0063]
 プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第2組の第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第2組の第1電極141および第2電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
[0064]
 第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1組の第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンスをRp1-jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
[0065]
 また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第2組の第1電極127および第2電極130の側(本体10の側)を見たときのインピーダンスをRp2-jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
[0066]
 第7実施形態のプラズマ処理装置1は、第2組を構成する第1電極141を昇降させる機構および第2組を構成する第1電極141を回転させる機構の少なくとも一方を更に備えうる。図13に示された例では、プラズマ処理装置1は、第1電極141を昇降させる機構および第1電極141を回転させる機構の双方を含む駆動機構114を備える。また、図13に示された例では、プラズマ処理装置1は、第2組を構成する第2電極145を昇降させる機構314を備える。真空容器110と駆動機構114、314との間には、真空隔壁を構成するベローズが設けられうる。
[0067]
 図14を参照しながら、図13に示された第7実施形態のプラズマ処理装置1における第1バラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、第1乃至第5実施形態と同様に、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
[0068]
  ISO[dB]=20log(I3/I2’)
 図14において、Rp-jXp(=Rp/2-jXp/2+Rp/2-jXp/2)は、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104a及び104bのリアクタンスを含む)を示している。Rpは抵抗成分、-Xpはリアクタンス成分を示している。また、図14において、Xは、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
[0069]
 第1実施形態の説明において参照した図4には、電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。図4の関係は、第7実施形態においても成り立つ。本発明者は、第7実施形態においても、1.5≦X/Rp≦5000を満たすことが、真空容器110の内部空間(第1電極105aと第2電極105bとの間の空間)に形成されるプラズマの電位(プラズマ電位)を真空容器110の内面の状態に対して鈍感にするために有利であることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、-10.0dB≧ISO≧-80dBに相当する。
[0070]
 図15A~15Dには、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)をシミュレーションした結果示されている。図15Aは、真空容器110の内面に抵抗性の膜(1mΩ)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15A~15Dより、1.5≦X/Rp≦5000を満たすことが、真空容器110の内面が種々の状態においてプラズマ電位を安定させるために有利であることが理解される。
[0071]
 図16A~16Dには、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)をシミュレーションした結果が示されている。図16Aは、真空容器110の内面に抵抗性の膜(1mΩ)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16A~16Dより、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面の状態に依存してプラズマ電位が変化することが理解される。
[0072]
 ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.16、X/Rp=0.87)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極105aと第2電極105bの間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、図16A~16Dに例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成することが有利である。
[0073]
 図17には、本発明の第8実施形態のプラズマ処理装置1の構成が模式的に示されている。第8実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第8実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第7実施形態に従いうる。第8実施形態のプラズマ処理装置1は、バラン(第1バラン)103と、真空容器110と、第1電極105aと、第2電極105bとを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極105aと、第2電極105bとを備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。
[0074]
 第1電極105aは、第1部材としての第1ターゲット109aを保持する第1保持面HS1を有し、第2電極105bは、第2部材としての第2ターゲット109bを保持する第2保持面HS2を有しうる。第1保持面HS1および第2保持面HS2は、1つの平面PLに属しうる。
[0075]
 第8実施形態のプラズマ処理装置1は、更に、第2バラン303と、第3電極141と、第4電極145とを備えてもよい。換言すると、プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1電極105aと、第2電極105bと、第3電極141と、第4電極145とを備えうる。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1電極105aと、第2電極105bと、第3電極141と、第4電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
[0076]
 第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第3不平衡端子401、第4不平衡端子402、第3平衡端子411および第4平衡端子412を有する。第2バラン303の第3不平衡端子401および第4不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第3平衡端子411および第4平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。バラン103、303は、例えば、図2A、2B(図14)に記載された構成を有しうる。
[0077]
 第1電極105aは、第1ターゲット109aを保持し、第1ターゲット109aを介して処理対象の基板112の側の空間と対向する。第2電極105bは、第1電極105aの隣に配置され、第2ターゲット109bを保持し、第2ターゲット109bを介して処理対象の基板112の側の空間と対向する。ターゲット109aおよび109bは、例えば、絶縁体材料または導電体材料でありうる。第1電極105aは、第1バラン103の第1平衡端子211に電気的に接続され、第2電極105bは、第1バラン103の第2平衡端子212に電気的に接続されている。
[0078]
 第3電極141は、基板112を保持する。第4電極145は、第1電極141の周囲に配置されうる。第3電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第4電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
[0079]
 上記の構成は、第1電極105aが第1端子251に電気的に接続され、第2電極105bが第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に接続された構成として理解されうる。また、上記の構成は、第3電極141が第3端子451に電気的に接続され、第4電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に接続されているものとして理解されうる。
[0080]
 第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、第1経路PTH1によって電気的に接続されうる。第1経路PTH1には、リアクタンス511aが配置されうる。換言すると、第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、リアクタンス511aを介して電気的に接続されうる。リアクタンス511aは、キャパシタを含むことができ、該キャパシタは、第1バラン103の第1平衡端子211と第1電極105aとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断するブロッキングキャパシタとして機能しうる。第2電極105bと第1バラン103の第2平衡端子212(第2端子252)とは、第2経路PTH2によって電気的に接続されうる。第2経路PTH2には、リアクタンス511bが配置されうる。換言すると、第2電極105bと第1バラン103の第2平衡端子212(第3端子252)とは、リアクタンス511bを介して電気的に接続されうる。リアクタンス511bは、キャパシタを含むことができ、該キャパシタは、第1バラン103の第2平衡端子212と第2電極105bとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断するブロッキングキャパシタとして機能しうる。第1電極105a、第2電極105bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
[0081]
 プラズマ処理装置1は、第1電極105aと接地との間に配置されたリアクタンス521aを備えうる。プラズマ処理装置1は、第2電極105bと接地との間に配置されたリアクタンス521bを備えうる。プラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続するリアクタンス530を備えうる。
[0082]
 1つの構成例において、プラズマ処理装置1は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスとして、(a)第1平衡端子211と第1電極105aとを接続する第1経路PTH1に配置されたリアクタンス511a、(b)第1電極105aと接地との間に配置されたリアクタンス521a、(c)第2平衡端子212と第2電極105bとを接続する第2経路PTH2に配置されたリアクタンス511b、(d)第2電極105bと接地との間に配置されたリアクタンス521b、および、(e)第1経路PTH1と第2経路PTH2とを接続するリアクタンス530、の少なくとも1つを含む。
[0083]
 第3電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第3電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子401と第2不平衡端子402との間を流れる直流電流を遮断するように構成されてもよい。第3電極141、第4電極145は、それぞれ絶縁体142、146を介して真空容器110によって支持されうる。
[0084]
 プラズマ処理装置1は、第1不平衡端子と201と第2不平衡端子202との間に供給される高周波を発生する第1高周波電源101を備えうる。高周波電源101は、第1不平衡端子と201と第2不平衡端子202との間に供給される高周波の周波数を変更可能である。該周波数を変更することによって、第1電極105aに印加される第1電圧および第2電極105bに印加される第2電圧を調整することができる。あるいは、該周波数を変更することによって、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係を調整することができる。
[0085]
 したがって、該周波数を調整することによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量との関係を調整することができる。あるいは、該周波数を調整することによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量とのバランスを調整することができる。これにより、第1ターゲット109aの消費量と第2ターゲット109bの消費量との関係を調整することができる。あるいは、第1ターゲット109aの消費量と第2ターゲット109bの消費量とのバランスを調整することができる。このような構成は、例えば、第1ターゲット109aの交換タイミングと第2ターゲット109bの交換タイミングとを同じタイミングにし、プラズマ処理装置1のダウンタイムを低減するために有利である。また、該周波数を調整することによって、基板112に形成される膜の厚さ分布を調整することもできる。
[0086]
 プラズマ処理装置1は、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102を更に備えうる。第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103および第1経路PTH1を介して、第1電極105aと第2電極105bとの間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1電極105aおよび第2電極105bは、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
[0087]
 プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第3電極141と第4電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第3電極141および第4電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
[0088]
 プラズマ処理装置1は、基板保持部として機能する第3電極141を回転させることによって基板112を回転させる駆動機構114を備えうる。駆動機構114は、基板保持部として機能する第3電極141を昇降させることによって基板112を昇降させる昇降機構を含んでもよい。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。
[0089]
 第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンスをRp1-jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために特に有利である。ただし、1.5≦X/Rp1≦5000という条件を満たすことは、第8実施形態において必須ではなく、有利な条件であることに留意されたい。第8実施形態では、バラン103を設けることによって、バラン103を設けない場合よりも、プラズマの電位を安定させることができる。また、発生する高周波の周波数を変更可能な高周波電源101を設けることによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量との関係を調整することができる。また、基板112を駆動機構114によって回転させながら基板112に膜を形成することによって、基板112の面内における該膜の厚さばらつきを低減することができる。
[0090]
 また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第3電極141および第4電極145の側(本体10の側)を見たときのインピーダンスをRp2-jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために特に有利である。ただし、1.5≦X/Rp2≦5000という条件を満たすことは、第8実施形態において必須ではなく、有利な条件であることに留意されたい。
[0091]
 以下、図18~図23、図28A~図28Cおよび図29A~図29Eを参照しながら、第8実施形態のプラズマ処理装置1を具体化した第9乃至第12実施形態を説明する。図18には、本発明の第9実施形態のプラズマ処理装置1の構成が模式的に示されている。第9実施形態として言及しない事項は、第8実施形態に従いうる。第9実施形態のプラズマ処理装置1は、第1経路PTH1に配置されたリアクタンス511a、および、第2経路PTH2に配置されたリアクタンス511b、の少なくとも1つを含む。ここで、プラズマ処理装置1は、第1経路PTH1に配置されたリアクタンス511a、および、第2経路PTH2に配置されたリアクタンス511bの双方を含むことが好ましい。
[0092]
 第1リアクタンス511aは、インダクタ601aおよびキャパシタ602aを含みうる。インダクタ601aは、第1平衡端子211(第1端子251)とキャパシタ602aとの間に配置されてもよいし、キャパシタ602aと第1電極105aとの間に配置されてもよい。第2リアクタンス511bは、インダクタ601bおよびキャパシタ602bを含みうる。インダクタ601bは、第2平衡端子212(第2端子252)とキャパシタ602bとの間に配置されてもよいし、キャパシタ602bと第2電極105bとの間に配置されてもよい。
[0093]
 プラズマ処理装置1は、基板保持部として機能する第3電極141を回転させることによって基板112を回転させる駆動機構114を備えうる。駆動機構114は、基板保持部として機能する第3電極141を昇降させることによって基板112を昇降させる昇降機構を含んでもよい。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。
[0094]
 図22には、第9実施形態のプラズマ処理装置1において、高周波電源101が発生する高周波の周波数を12.56MHzに設定した場合に基板112に形成された膜の正規化された厚さ分布が示されている。また、図22には、第9実施形態のプラズマ処理装置1において、高周波電源101が発生する高周波の周波数を13.56MHzに設定した場合に基板112に形成された膜の正規化された厚さ分布が示されている。横軸は、図18における横方向(基板112の表面に平行な方向)の位置であり、基板112の中心からの距離を示している。高周波電源101が発生する高周波の周波数が12.56MHzであるときは、基板112の中心の左側と右側とで膜の厚さ分布が大きく異なっている。一方、高周波電源101が発生する高周波の周波数が13.56MHzであるときは、基板112の中心の左側と右側とで膜の厚さ分布の対称性が高い。高周波電源101が発生する高周波の周波数が13.56MHzである場合の方が、高周波電源101が発生する高周波の周波数が12.56MHzである場合よりも、第1電極105aに与えられる第1電圧と第2電極105bに与えられる第2電圧とのバランスが良い。
[0095]
 図23には、第9実施形態のプラズマ処理装置1において、高周波電源101が発生する高周波の周波数を変化させた場合における第1電極105aの電圧(第1電圧)および第2電極105bの電圧(第2電圧)が例示されている。高周波電源101が発生する高周波の周波数を変化させることによって第1電極105aの電圧(第1電圧)および第2電極105bの電圧(第2電圧)を調整することができる。あるいは、高周波電源101が発生する高周波の周波数を変化させることによって第1電極105aの電圧(第1電圧)と第2電極105bの電圧(第2電圧)との関係を調整することができる。例えば、高周波電源101が発生する高周波の周波数は、第1電極105aの電圧(第1電圧)と第2電極105bの電圧(第2電圧)とが等しくなるように調整されうる。これにより、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量とを同じにすることができる。これは、例えば、第1ターゲット109aの交換タイミングと第2ターゲット109bの交換タイミングとを同じタイミングにし、プラズマ処理装置1のダウンタイムを低減するために有利である。
[0096]
 図28A~28Cには、第9実施形態のプラズマ処理装置1において、基板112とターゲット109a、10bとの距離(鉛直方向の距離)であるTS距離を120mm、105mm、100mmとしたときに基板112に形成された膜の厚さ分布が例示されている。ここで、図28Aは、TS距離を120mmのときに基板112に形成された膜の厚さ分布、図28Bは、TS距離を105mmのときに基板112に形成された膜の厚さ分布、図28Cは、TS距離を100mmのときに基板112に形成された膜の厚さ分布を示している。基板112への膜の形成は、駆動機構114によって基板112を回転させながら実施された。
[0097]
 図29A~図29Eには、第9実施形態のプラズマ処理装置1において、高周波電源101が発生する高周波の周波数を12.56MHz、13.06MHz、13.56MHz、14.06MHz、14.56MHzとしたときに基板112に形成された膜の厚さ分布が例示されている。ここで、図29Aは、高周波の周波数を12.56MHzとしたときに基板112に形成された膜の厚さ分布、図29Bは、高周波の周波数を13.06MHzとしたときに基板112に形成された膜の厚さ分布、図29Cは、高周波の周波数を13.56MHzとしたときに基板112に形成された膜の厚さ分布を示している。図29Dは、高周波の周波数を14.06MHzとしたときに基板112に形成された膜の厚さ分布、図29Eは、高周波の周波数を14.56MHzとしたときに基板112に形成された膜の厚さ分布を示している。
[0098]
 図29A~29Eにおいて、高周波電源101が発生する高周波の周波数が14.06MHzである場合に、基板112に形成される膜の厚さばらつきが最も小さくなった。図23に示された結果より、高周波電源101が発生する高周波の周波数が13.4MHz付近である場合に第1電極105aに与えられる電圧と第2電極105bに与えられる電圧とが略等しくなることが分かる。一方、図29A~29Eに示された結果より、高周波電源101が発生する高周波の周波数が14.06MHzである場合に、基板112に形成された膜の厚さばらつきが最も小さい。このことより、基板112を回転させる場合において、第1電極105aに与えられる電圧と第2電極105bに与えられる電圧とが略等しい場合に基板112に形成される膜の厚さばらつきが最も小さくなるとは限らないことが理解される。したがって、基板112を回転させながら膜を形成する場合、基板112に形成される膜の厚さばらつきが最も小さくなるように高周波電源101が発生する高周波の周波数が決定されるべきである。高周波電源101が発生する高周波の周波数は、実験を通して、または、シミュレーションを通して決定されうる。
[0099]
 図19には、本発明の第10実施形態のプラズマ処理装置1の構成が模式的に示されている。第10実施形態として言及しない事項は、第8実施形態に従いうる。第10実施形態のプラズマ処理装置1は、第1電極105aと接地との間に配置されたリアクタンス521a、および、第2電極105bと接地との間に配置されたリアクタンス521bの少なくとも1つを備えている。リアクタンス521aは、例えば、インダクタ607aおよびキャパシタ606aを含みうる。リアクタンス521bは、例えば、インダクタ607bおよびキャパシタ606bを含みうる。
[0100]
 プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス511a(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス511b(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
[0101]
 図20には、本発明の第11実施形態のプラズマ処理装置1の構成が模式的に示されている。第11実施形態として言及しない事項は、第8実施形態に従いうる。第11実施形態のプラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続するリアクタンス530としてのインダクタ608を備えている。プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス511a(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス511b(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
[0102]
 図21には、本発明の第12実施形態のプラズマ処理装置1の構成が模式的に示されている。第12実施形態として言及しない事項は、第8実施形態に従いうる。第12実施形態のプラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続する可変リアクタンス530としてのキャパシタ609を備えている。プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス511a(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス511b(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
[0103]
 以下、図24~図27を参照しながら、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、高周波電源101が発生する高周波の周波数を調整する動作を説明する。図24には、本発明の第13実施形態のプラズマ処理装置1の構成が模式的に示されている。第13実施形態のプラズマ処理装置1は、図18に示された第9実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2がそれぞれ目標値になるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2がそれぞれ目標値V1T、V2Tになるように、高周波電源101が発生する高周波の周波数を調整する指令値CNTを発生する。目標値V1T、V2Tは、基板112に形成される膜の厚さが目標ばらつきに収まるように予め決定されうる。
[0104]
 図25には、本発明の第14実施形態のプラズマ処理装置1の構成が模式的に示されている。第14実施形態のプラズマ処理装置1は、図19に示された第10実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2がそれぞれ目標値V1T、V2Tになるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2がそれぞれ目標値V1T、V2Tになるように、高周波電源101が発生する高周波の周波数を調整する指令値CNTを発生する。目標値V1T、V2Tは、基板112に形成される膜の厚さが目標ばらつきに収まるように予め決定されうる。
[0105]
 図26には、本発明の第15実施形態のプラズマ処理装置1の構成が模式的に示されている。第15実施形態のプラズマ処理装置1は、図20に示された第11実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2がそれぞれ目標値になるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2がそれぞれ目標値V1T、V2Tになるように、高周波電源101が発生する高周波の周波数を調整する指令値CNTを発生する。目標値V1T、V2Tは、基板112に形成される膜の厚さが目標ばらつきに収まるように予め決定されうる。
[0106]
 図27には、本発明の第16実施形態のプラズマ処理装置1の構成が模式的に示されている。第16実施形態のプラズマ処理装置1は、図21に示された第12実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2がそれぞれ目標値V1T、V2Tになるように、高周波電源101が発生する高周波の周波数を調整する指令値CNTを発生する。目標値V1T、V2Tは、基板112に形成される膜の厚さが目標ばらつきに収まるように予め決定されうる。
[0107]
 図24~図27を参照して説明した第13乃至第16実施形態では、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて高周波電源101が発生する高周波の周波数を調整する。このような構成に代えて、制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて高周波電源101が発生する高周波の周波数を調整するように構成されてもよい。第1電極105aの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。同様に、第2電極105bの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて、例えば、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とが等しくなるように、高周波電源101が発生する高周波の周波数を調整するように構成されうる。
[0108]
 次に、本発明の第17実施形態としてのプラズマ処理方法を説明する。第17実施形態としてのプラズマ処理方法は、第8乃至第16実施形態のいずれかのプラズマ処理装置1において基板112を処理する。該プラズマ処理方法は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係が調整されるように高周波電源101が発生する高周波の周波数を調整する工程と、該工程の後に、基板112を駆動機構114によって回転させながら処理する工程と、を含みうる。該処理は、基板112にスパッタリングによって膜を形成する工程、または、基板112をエッチングする工程を含みうる。
[0109]
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。

符号の説明

[0110]
1:プラズマ処理装置、10:本体、101:高周波電源、102:インピーダンス整合回路、103:バラン、104:ブロッキングキャパシタ、106:第1電極、107、108:絶縁体、109:ターゲット、110:真空容器、111:第2電極、112:基板、201:第1不平衡端子、202:第2不平衡端子、211:第1平衡端子、212:第2平衡端子、251:第1端子、252:第2端子、221:第1コイル、222:第2コイル、223:第3コイル、224:第4コイル、511a、511b、521a、521b、530:リアクタンス、700:制御部

請求の範囲

[請求項1]
 第1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、
 接地された真空容器と、
 前記第1平衡端子に電気的に接続された第1電極と、
 前記第2平衡端子に電気的に接続された第2電極と、
 前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、
 前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、
 基板を保持する基板保持部と、
 前記基板保持部を回転させる駆動機構と、を備え、
 前記高周波電源は、前記高周波の周波数を変更可能であり、前記周波数の変更によって前記関係が調整される、
 ことを特徴とするプラズマ処理装置。
[請求項2]
 前記第1電極は、第1部材を保持する第1保持面を有し、前記第2電極は、第2部材を保持する第2保持面を有し、前記第1保持面および前記第2保持面は、1つの平面に属している、
 ことを特徴とする請求項1に記載のプラズマ処理装置。
[請求項3]
 前記第1電極は、第1ターゲットを保持し、前記第2電極は、第2ターゲットを保持し、前記第1電極は前記第1ターゲットを介して前記基板の側の空間と対向し、前記第2電極は前記第2ターゲットを介して前記空間と対向する、
 ことを特徴とする請求項1又は2に記載のプラズマ処理装置。
[請求項4]
 前記調整リアクタンスは、(a)前記第1平衡端子と前記第1電極とを接続する第1経路に配置されたリアクタンス、(b)前記第1電極と接地との間に配置されたリアクタンス、(c)前記第2平衡端子と前記第2電極とを接続する第2経路に配置されたリアクタンス、(d)前記第2電極と接地との間に配置されたリアクタンス、および、(e)前記第1経路と前記第2経路とを接続するリアクタンス、の少なくとも1つを含む、
 ことを特徴とする請求項3に記載のプラズマ処理装置。
[請求項5]
 前記調整リアクタンスは、前記第1平衡端子と前記第1電極とを接続する第1経路に配置された第1リアクタンス、および、前記第2平衡端子と前記第2電極とを接続する第2経路に配置された第2リアクタンス、の少なくとも1つを含む、
 ことを特徴とする請求項3に記載のプラズマ処理装置。
[請求項6]
 前記第1リアクタンスは、インダクタを含み、
 前記第2リアクタンスは、インダクタを含む、
 ことを特徴とする請求項5に記載のプラズマ処理装置。
[請求項7]
 前記第1リアクタンスは、キャパシタを含み、
 前記第2リアクタンスは、キャパシタを含む、
 ことを特徴とする請求項5又は6に記載のプラズマ処理装置。
[請求項8]
 前記調整リアクタンスは、前記第1電極と接地とを接続する第3経路に配置された第3リアクタンス、および、前記第2電極と接地とを接続する第4経路に配置された第4リアクタンス、の少なくとも1つを含む、
 ことを特徴とする請求項3に記載のプラズマ処理装置。
[請求項9]
 前記第3リアクタンスは、キャパシタを含み、
 前記第4リアクタンスは、キャパシタを含む、
 ことを特徴とする請求項8に記載のプラズマ処理装置。
[請求項10]
 前記第3リアクタンスは、インダクタを含み、
 前記第4リアクタンスは、インダクタを含む、
 ことを特徴とする請求項8又は9に記載のプラズマ処理装置。
[請求項11]
 前記調整リアクタンスは、前記第1平衡端子と前記第1電極とを接続する第1経路と前記第2平衡端子と前記第2電極とを接続する第2経路とを接続するリアクタンスを含む、
 ことを特徴とする請求項3に記載のプラズマ処理装置。
[請求項12]
 前記リアクタンスは、インダクタを含む、
 ことを特徴とする請求項11に記載のプラズマ処理装置。
[請求項13]
 前記リアクタンスは、キャパシタを含む、
 ことを特徴とする請求項11又は12に記載のプラズマ処理装置。
[請求項14]
 前記第1電極の電圧と前記第2電極の電圧とに基づいて前記高周波電源が発生する前記高周波の周波数を制御する制御部を更に備える、
 ことを特徴とする請求項1乃至13のいずれか1項に記載のプラズマ処理装置。
[請求項15]
 前記第1電極の近傍におけるプラズマ強度と前記第2電極の近傍におけるプラズマ強度とに基づいて前記高周波電源が発生する前記高周波の周波数を制御する制御部を更に備える、
 ことを特徴とする請求項1乃至13のいずれか1項に記載のプラズマ処理装置。
[請求項16]
 前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときの前記第1平衡端子と前記第2平衡端子との間の抵抗成分をRpとし、前記第1不平衡端子と前記第1平衡端子との間のインダクタンスをXとしたときに、1.5≦X/Rp≦5000を満たす、
 ことを特徴とする請求項1乃至15のいずれか1項に記載のプラズマ処理装置。
[請求項17]
 前記バランは、前記第1不平衡端子と前記第1平衡端子とを接続する第1コイルと、前記第2不平衡端子と前記第2平衡端子とを接続する第2コイルとを有する、
 ことを特徴とする請求項1乃至16のいずれか1項に記載のプラズマ処理装置。
[請求項18]
 前記バランは、前記第1平衡端子と前記第2平衡端子との間に接続された第3コイルおよび第4コイルを更に有し、前記第3コイルおよび前記第4コイルは、前記第3コイルと前記第4コイルとの接続ノードの電圧を前記第1平衡端子の電圧と前記第2平衡端子の電圧との中点とするように構成されている、
 ことを特徴とする請求項17に記載のプラズマ処理装置。
[請求項19]
 前記高周波電源と前記バランとの間に配置されたインピーダンス整合回路と、
 を更に備えることを特徴とする請求項1乃至18のいずれか1項に記載のプラズマ処理装置。
[請求項20]
 第1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、基板を保持する基板保持部と、前記基板保持部を回転させる駆動機構と、を備えるプラズマ処理装置において基板を処理するプラズマ処理方法であって、
 前記関係が調整されるように前記高周波電源が発生する前記高周波の周波数を調整する工程と、
 前記工程の後に、前記基板を前記駆動機構によって回転させながら処理する工程と、
 を含むことを特徴とするプラズマ処理方法。

図面

[ 図 1]

[ 図 2A]

[ 図 2B]

[ 図 3]

[ 図 4]

[ 図 5A]

[ 図 5B]

[ 図 5C]

[ 図 5D]

[ 図 6A]

[ 図 6B]

[ 図 6C]

[ 図 6D]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15A]

[ 図 15B]

[ 図 15C]

[ 図 15D]

[ 図 16A]

[ 図 16B]

[ 図 16C]

[ 図 16D]

[ 図 17]

[ 図 18]

[ 図 19]

[ 図 20]

[ 図 21]

[ 図 22]

[ 図 23]

[ 図 24]

[ 図 25]

[ 図 26]

[ 図 27]

[ 図 28A]

[ 図 28B]

[ 図 28C]

[ 図 29A]

[ 図 29B]

[ 図 29C]

[ 図 29D]

[ 図 29E]