Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2019001912) BLOWER WHEEL
Note: Text based on automatic Optical Character Recognition processes. Please use the PDF version for legal matters

Gebläserad

Beschreibung:

Die Erfindung betrifft ein hinsichtlich Wirkungsgrad und Geräuschverhalten verbessertes Gebläserad.

Gebläseräder werden beispielsweise in Axial-, Diagonal- oder Radiallüftern zur Luftförderung eingesetzt. Dabei sind der erreichbare Wirkungsgrad, die Drehzahl und die Geräuschbildung wesentliche technische Eigenschaften, die es stets zu verbessern gilt.

Ein kritischer Bereich des Gebläserads ist der Übergang zwischen den Gebläseradschaufeln und der diese überdeckenden Boden- und/oder Deck-

Scheibe, da es hier im Betrieb zu einer erheblichen Kerbwirkung und Turbulenzen der Strömung kommt.

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Gebläserad bereit zu stellen, bei dem die Festigkeit des Übergangs zwischen den Gebläseradschaufeln und der diese überdeckenden Scheibe erhöht und maximal in diesem Bereich auftretende Spannungen im Betrieb reduziert werden, um die Maximaldrehzahl und mithin den Wirkungsgrad zu erhöhen und die Geräuschbildung zu verringern.

Diese Aufgabe wird durch die Merkmalskombination gemäß Patentanspruch 1 gelöst.

Erfindungsgemäß wird ein Gebläserad mit einer Vielzahl von in einem Schaufelkranz angeordneten Gebläseradschaufeln vorgeschlagen, die auf zumindest einer axialen Seite mit einer die Gebläseradschaufeln zumindest abschnittsweise überdeckenden Scheibe verbunden sind. Die Anbindung zwischen den Gebläseradschaufeln und der Scheibe bestimmt eine Übergangsgeometrie, die zumindest auf einer Seite der Gebläseradschaufeln, insbesondere einer nach radial innen zu einer Rotationsachse des Gebläserads weisenden Seite, im Querschnitt gesehen einen gerundeten Verlauf einer quadratischen Funktion aufweist.

Die Richtungsangabe der nach radial innen zu einer Rotationsachse des Gebläserads weisenden Seite ergibt sich nur bei in Umfangsrichtung gekrümmten Gebläseradschaufeln, nicht jedoch bei gerade nach radial außen verlaufenden Gebläseradschaufeln. Die Erfindung umfasst Ausführungen des Gebläserads, bei der die Gebläseradschaufeln in Umfangsrichtung vorwärts-oder rückwärtsgekrümmt verlaufend ausgebildet sind.

Der gerundete Verlauf gemäß einer quadratischen Funktion erhöht die Fes- tigkeit des Gebläserads im kritischen Übergangsbereich zwischen den jeweiligen Gebläseradschaufeln und der angrenzenden Scheibe, wobei als Scheibe sowohl eine Bodenscheibe als auch zusätzlich oder alternativ eine Deckscheibe umfasst sind. Einen größeren Effekt erzielt man jedoch bei der Übergangsgeometrie zwischen den Gebläseradschaufeln und der Bodenscheibe, d.h. der Scheibe auf einer der Ansaugseite gegenüber liegenden Seite.

Bei dem Gebläserad wird die quadratische Funktion vorzugsweise bestimmt durch die Gleichung (a-X12)+(b-X1 X2)+X22+d=0, wobei die Terme X1 und X2 betragsmäßig durch eine Länge bestimmt werden, die der jeweiligen Gebläseradschaufeldicke entspricht, und die Werte für a, b, d in einem Bereich liegen, dass gilt 0,25<a<4, -2<b<2 und -36<d<-0,25. Weiter bevorzugt liegen die Werte für a, b, d in einem Bereich, dass gilt 0,5<a<2,

-0,5<b<1 , -16<d<-0,5.

Durch die vorstehend beschriebene quadratische Gleichung ist, im Querschnitt gesehen, ein Kurvenverlauf der Übergangsgeometrie bestimmt, der die maximalen im Betrieb auftretenden Wandschubspannungen im Übergangsbereich zwischen Scheibe und Gebläseradschaufeln um über 30% reduziert. Die maximale Betriebsdrehzahl kann gegenüber herkömmlichen Gebläserädern mit nicht entsprechend gerundeter Kontur im Übergangsbereich um über 7% erhöht werden. Ferner führt die erfindungsgemäße Übergangsgeometrie zu einer Vergleichmäßigung der Strömung am Übergang zwischen den Gebläseradschaufeln und der Scheibe und mithin zu einer verringerten Turbulenz. Unter anderem wird dadurch das im Betrieb erzeugte Geräuschniveau reduziert und der Wirkungsgrad verbessert.

Der Gleichungsterm X1 wird vorzugsweise durch einen Einheitsvektor bestimmt, der sich in Verlängerung einer nach radial innen zur Rotationsachse weisenden Innenwand der jeweiligen Gebläseradschaufel in Richtung zur Scheibe erstreckt und seinen betragsmäßigen Nullpunkt am Beginn der Übergangsgeometrie aufweist.

Der Gleichungsterm X2 wird vorzugsweise durch einen Einheitsvektor bestimmt, der sich in Verlängerung einer nach axial innen weisenden Oberfläche der Scheibe in Richtung zur jeweiligen Gebläseradschaufel erstreckt und seinen betragsmäßigen Nullpunkt am Beginn der Übergangsgeometrie aufweist.

Die beiden Einheitsvektoren X1 und X2 sind demzufolge aufeinander zuweisend ausgerichtet und bilden in ihren gedachten Verlängerungen einen Schnittpunkt.

Vorzugsweise wird in einem Toleranzband für den Verlauf der Übergangsgeometrie von X1 und X2 ein Bereich von ±0,25 definiert.

Die Übergangsgeometrie kann einseitig an den Gebläseradschaufeln, in einer alternativen Ausführung jedoch auch zweiseitig, d.h. zwischen den jeweiligen Gebläseradschaufeln und der Scheibe sowohl auf der nach radial innen zur Rotationsachse als auch auf einer gegenüberliegenden, nach radial außen weisende Seite der Gebläseradschaufeln vorgesehen sein. Bei gerade nach radial außen verlaufenden Gebläseradschaufeln kann die Übergangs-geometire ebenfalls beidseitig vorgesehen sein.

In einer Weiterbildung des Gebläserads ist vorgesehen, dass die Scheibe im Bereich der Übergangsgeometrie lokal beschränkt in Richtung der Gebläseradschaufel axial eingezogen ausgebildet ist und im Querschnitt gesehen auf einer der Gebläseradschaufel gegenüberliegenden Seite eine Aussparung bestimmt. Die Aussparung in der Scheibe erstreckt sich dabei vorzugsweise entlang der vollständigen Erstreckung der Gebläseradschaufel und wird

durch die Formgebung der Übergangsgeometrie an der Scheibe gebildet. Durch das Vorsehen der Aussparungen wird eine unerwünschte Materialanhäufung bei der Erzeugung des gerundeten Kurvenverlaufs der Übergangs- geometrie vermieden.

Zudem ist eine Ausführung des Gebläserads strömungstechnisch vorteilhaft, bei der sich die Übergangsgeometrie über die gesamte Sehnenlänge der jeweiligen Gebläseradschaufeln erstreckt.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:

Fig. 1 eine perspektivische Ansicht eines Ausführungsbeispiels eines

Gebläserads;

Fig. 2 eine seitliche Schnittansicht des Gebläserads aus Fig. 1 ;

Fig. 3 eine Detailansicht A aus Figur 2;

Fig. 4 eine seitliche Schnittansicht eines Gebläserads gemäß dem

Stand der Technik;

Fig. 5 ein Diagramm zur Darstellung des verbesserten Wirkungsgrads;

Fig. 6 ein Diagramm zur Darstellung des verringerten Geräuschbildung.

Gleiche Bezugszeichen benennen gleiche Teile in allen Ansichten.

Die Figuren 1 bis 3 zeigen ein Ausführungsbeispiel eines Gebläserads 1 , ausgeführt als Radialgebläserad, mit einer Vielzahl von in einem Schaufelkranz angeordneten, in Umfangsrichtung gekrümmt ausgebildeten Gebläseradschaufeln 2, die ansaugseitig mit einer Deckscheibe 4 und auf der axial gegenüberliegenden Seite mit einer Bodenscheibe 3 verbunden sind. Das dargestellte Gebläserad 1 saugt Luft axial über die Ansaugöffnung 11 an und bläst diese radial über zwischen den Gebläseradschaufeln 2 ausgebildeten Kanälen aus. Die Bodenscheibe 3 überdeckt die unteren axialen Stirnseiten der Gebläseradschaufeln 2 vollständig. Im Bereich der Deckscheibe 4 stehen die Gebläseradschaufeln 2 radial einwärts über einen Innenrand der Deckscheibe 4 hervor, so dass die oberen axialen Stirnseiten der Gebläseradschaufeln 2 nur abschnittsweise überdeckt sind. Im Bereich der Bodenscheibe 3 weist das Gebläserad 1 eine Nabe 17 zur Befestigung an einen Antrieb auf.

Die Anbindung zwischen den Gebläseradschaufeln 2 und der Bodenscheibe 3 bestimmt eine speziell definierte Übergangsgeometrie 5, die auf einer nach radial innen zu der Rotationsachse RA des Gebläserads 1 weisenden Seite im Querschnitt gesehen einen gerundeten Verlauf einer quadratischen Funktion aufweist. Auch die nach radial außen weg von der Rotationsachse RA des Gebläserads 1 weisende Seite weist im Querschnitt gesehen einen gerundeten Verlauf auf, der jedoch nicht identisch zu der Übergangsgeometrie 5 ist. Die Übergangsgeometrie 5 erstreckt sich bei dem Gebläserad 1 über die gesamte Sehnenlänge der Gebläseradschaufeln 2 entlang der Bodenscheibe 3.

Die quadratische Funktion des gerundeten Verlaufs wird in dem gezeigten Ausführungsbeispiel durch die Gleichung

(1 ,06-X12)+(0,09-X1 -X2)+X22+(-9) = 0

definiert, wobei X1 und X2 der jeweiligen Gebläseradschaufeldicke t (X1=t, X2=t) entspricht. Der Term X1 ist bestimmt durch den Einheitsvektor, der sich in Verlängerung einer nach radial innen zur Rotationsachse RA weisenden Innenwand der jeweiligen Gebläseradschaufel 2 in Richtung zur Bodenscheibe 3 erstreckt. Der Term X2 ist bestimmt durch den Einheitsvektor, der sich in Verlängerung der nach axial innen weisenden Oberfläche der Bodenscheibe 3 in Richtung zur jeweiligen Gebläseradschaufel 2 erstreckt. Die Nullpunkte 0 der beiden Vektoren liegen exakt am Beginn der Übergangsgeometrie 5 bezüglich der Gebläseradschaufeln 2 beziehungsweise der Bodenscheibe 3, wie in der Detailansicht in Figur 3 gezeigt.

Wie in den Figuren 2 und 3 gut zu erkennen, ist die Bodenscheibe 3 im Bereich der Übergangsgeometrie 5 in Richtung der einzelnen Gebläseradschaufeln 2 axial eingezogen ausgebildet und bestimmt, im Querschnitt gemäß Figur 3 gesehen, auf der der Gebläseradschaufel 2 gegenüberliegenden Unterseite jeweils die Aussparung 8. Dabei weisen die Aussparungen 8 eine im Wesentlichen dreieckige Querschnittsform auf und erstrecken sich über die gesamte Länge der jeweiligen Gebläseradschaufeln 2.

In Figur 4 ist ein Gebläserad 100 gemäß dem Stand der Technik dargestellt, das als Vergleichs-Gebläserad zur Feststellung der vorstehend beschriebenen messtechnisch erfassten Verbesserungen herangezogen wird. Es ist strömungstechnisch identisch mit Gebläseradschaufeln 200, einer Deckscheibe 400, einer Bodenscheibe 300 und einer Nabe 170 zu dem Gebläserad gemäß Figur 1 aufgebaut, jedoch ist die Übergangsgeometrie 500 wie herkömmlich ohne gerundeten Verlauf einer quadratischen Funktion, sondern stoßend ausgebildet.

In Figur 5 ist ein Diagramm mit bei identischem Versuchsaufbau gemessenen Kennlinien zum Druckverlauf psf [Pa] und dem Wirkungsgrad nse [%] bei unterschiedlichen Volumenströmen qv [m7h] des Gebläserads 1 gemäß Fig. 1 und desselben Gebläserads 100 ohne Übergangsgeometrie 5 gemäß Figur 4 dargestellt, wobei die gepunktete Kennlinien jeweils das Gebläserad 1 gemäß Figur 1 und die durchgezogenen Kennlinien jeweils das Gebläserad 100 gemäß Figur 4 ohne Übergangsgeometrie 5 kennzeichnen. Die vorteilhafte Wirkung mit erhöhtem Spitzwirkungsgrad bei einem Volumenstrom ab ca. 11500 m3/h aufwärts, d.h. im hochrelevanten Betriebsbereich, ist eindeutig zu entnehmen.

Neben dem nochmals dargestellten dem Wirkungsgrad nse [%] zeigt Figur 6 zudem die gemessene Reduzierung des Geräuschverhaltens LwA [dBA], wobei wieder die gepunktete Kennlinien jeweils das Gebläserad 1 gemäß Figur 1 und die durchgezogenen Kennlinien jeweils das Gebläserad 100 gemäß Figur 4 ohne Übergangsgeometrie 5 kennzeichnen. Insbesondere im Bereich hoher Drehzahlen und einem Volumenstrom ab ca. 12000 m3/h re-duziert sich die Geräuschentwicklung um teilweise über ein halbes Dezibel.

* * * * *