Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2018204877) PREDICTION OF MULTI-AGENT ADVERSARIAL MOVEMENTS THROUGH SIGNATURE-FORMATIONS USING RADON-CUMULATIVE DISTRIBUTION TRANSFORM AND CANONICAL CORRELATION ANALYSIS
Latest bibliographic data on file with the International Bureau    Submit observation

Pub. No.: WO/2018/204877 International Application No.: PCT/US2018/031240
Publication Date: 08.11.2018 International Filing Date: 04.05.2018
Chapter 2 Demand Filed: 22.10.2018
IPC:
G05D 1/02 (2006.01) ,G06F 17/10 (2006.01)
G PHYSICS
05
CONTROLLING; REGULATING
D
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
1
Control of position, course, altitude, or attitude of land, water, air, or space vehicles, e.g. automatic pilot
02
Control of position or course in two dimensions
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
F
ELECTRIC DIGITAL DATA PROCESSING
17
Digital computing or data processing equipment or methods, specially adapted for specific functions
10
Complex mathematical operations
Applicants:
HRL LABORATORIES, LLC [US/US]; 3011 Malibu Canyon Road Malibu, CA 90265, US
Inventors:
KOLOURI, Soheil; US
RAHIMI, Amir, M.; US
BHATTACHARYYA, Rajan; US
Agent:
TOPE-MCKAY, Cary, R.; US
Priority Data:
62/502,44105.05.2017US
Title (EN) PREDICTION OF MULTI-AGENT ADVERSARIAL MOVEMENTS THROUGH SIGNATURE-FORMATIONS USING RADON-CUMULATIVE DISTRIBUTION TRANSFORM AND CANONICAL CORRELATION ANALYSIS
(FR) PRÉDICTION DE MOUVEMENTS CONTRADICTOIRES MULTI-AGENTS PAR L'INTERMÉDIAIRE DE FORMATIONS DE SIGNATURE À L'AIDE D'UNE TRANSFORMATION DE DISTRIBUTION CUMULÉE AU RADON ET D'UNE ANALYSE CANONIQUE DES CORRÉLATIONS
Abstract:
(EN) Described is a system for predicting multi-agent movements. A Radon Cumulative Distribution Transform (Radon-CDT) is applied to pairs of signature-formations representing agent movements. Canonical correlation analysis (CCA) components are identified for the pairs of signature-formations. Then, a relationship between the pairs of signature formations is learned using the CCA components. A counter signature-formation for a new dataset is predicted using the learned relationship and a new signature-formation. Control parameters of a device can be adjusted based on the predicted counter signature-formation.
(FR) La présente invention concerne un système de prédiction de mouvements multi-agents. Une transformation de distribution cumulée au radon (Radon-CDT) est appliquée à des paires de formations de signature représentant des mouvements d'agent. Des composants d'analyse canonique des corrélations (CCA) sont identifiés pour les paires de formations de signature. Ensuite, une relation entre les paires de formations de signature est apprise à l'aide des composants CCA. Une contre-formation de signature pour un nouvel ensemble de données est prédite à l'aide de la relation apprise et d'une nouvelle formation de signature. Des paramètres de commande d'un dispositif peuvent être ajustés sur la base de la contre-formation de signature prédite.
front page image
Designated States: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
African Regional Intellectual Property Organization (ARIPO) (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW)
Eurasian Patent Office (AM, AZ, BY, KG, KZ, RU, TJ, TM)
European Patent Office (EPO) (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)
Publication Language: English (EN)
Filing Language: English (EN)