Processing

Please wait...

Settings

Settings

Goto Application

1. WO2018151554 - METHOD FOR RECEIVING SRS CONFIGURATION INFORMATION AND TERMINAL THEREFOR

Document

명세서

발명의 명칭

기술분야

1  

배경기술

2   3  

발명의 상세한 설명

기술적 과제

4   5   6  

과제 해결 수단

7   8   9   10   11   12   13   14  

발명의 효과

15   16  

도면의 간단한 설명

17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  

발명의 실시를 위한 형태

41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198  

산업상 이용가능성

199  

청구범위

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15  

도면

1   2a   2b   3a   3b   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23  

명세서

발명의 명칭 : SRS 설정 정보를 수신하는 방법 및 이를 위한 단말

기술분야

[1]
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 SRS 설정 정보를 수신하는 방법 및 이를 위한 단말에 관한 것이다.

배경기술

[2]
New radio access technology (RAT) 시스템이 도입되는 경우 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존 RAT에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다.
[3]
또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이, New RAT에서는 enhanced mobile broadband communication (eMBB), massive MTC (mMTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 서비스들을 제공하고자 한다.

발명의 상세한 설명

기술적 과제

[4]
본 발명에서 이루고자 하는 기술적 과제는 SRS 설정 정보를 수신하는 방법을 제공하는 데 있다.
[5]
본 발명에서 이루고자 하는 다른 기술적 과제는 SRS 설정 정보를 수신하기 위한 단말을 제공하는 데 있다.
[6]
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.

과제 해결 수단

[7]
상기의 기술적 과제를 달성하기 위한, 단말이 사운딩 참조 신호(Sounding Reference Symbol, SRS) 설정 정보를 수신하는 방법은, 기지국으로부터 상기 단말에 대한 설정된 동시 전송 가능한 SRS 자원의 수에 대한 정보를 포함하는 상기 SRS 설정 정보를 수신하는 단계; 및 상기 SRS 설정 정보에 기초하여 SRS 전송을 수행하는 단계를 포함할 수 있다. 상기 SRS 설정 정보는 한 슬롯 내의 SRS 전송을 위한 심볼 수 정보, 상기 한 슬롯 내의 SRS 전송을 위한 심볼의 위치 정보 동일 빔에 맵핑되는 SRS의 심볼 수 정보, 상기 SRS 전송을 위해 상기 한 슬롯 내에서 동일한 빔을 적용할 지 여부를 지시하는 정보, 한 SRS 심볼에서의 SRS 자원 수의 정보 및 SRS 자원 당 맵핑되는 포트의 수의 정보 중 적어도 어느 하나를 더 포함할 수 있다.
[8]
상기 방법은 상기 단말이 동시 전송 가능한 SRS 자원의 수에 대한 정보를 포함하는 단말 능력(capability) 정보를 상기 기지국으로 전송하는 단계를 더 포함하며, 상기 단말에 설정된 동시 전송 가능한 SRS 자원의 수는 상기 단말 능력 정보에 기초하여 결정된 것일 수 있다. 상기 방법은 상기 단말의 동시 전송 가능한 SRS 포트 수의 정보, 상기 단말의 동시 전송 가능한 상향링크 빔 수의 정보, 상기 단말의 패널 수의 정보 및 상기 단말의 트랜시버 유닛(tranceiver Unit, TXRU) 수의 정보 중 적어도 어느 하나를 더 포함하는 단말 능력 정보를 상기 기지국으로 전송하는 단계를 더 포함할 수 있으며, 상기 SRS 설정 정보는 상기 단말 능력 정보에 기초하여 결정된 것일 수 있다.
[9]
상기 SRS 설정 정보는 SRS 자원들 간의 다중화 방식을 지시하는 정보를 더 포함할 수 있다. 상기 지시된 다중화 방식은 상기 단말의 단말 능력 정보에 기초하여 결정된 것일 수 있다. 상기 단말 능력 정보는 상기 SRS 전송을 위한 최대 송신 안테나 포트들의 수 및 상기 최대 송신 안테나 포트들의 수에 대응되는 상기 SRS 자원들 간의 다중화 방식을 지시하는 정보를 포함할 수 있다. 상기 SRS 설정 정보는 상기 단말을 위해 설정된 SRS 주파수 호핑 패턴과 관련된 정보를 더 포함할 수 있다.
[10]
상기 방법은 상기 기지국이 상기 SRS 설정 정보에서 설정한 SRS 설정 능력(capability)이 상기 단말의 단말 능력보다 높게 설정된 경우, 상기 기지국의 SRS 설정이 잘못된 설정임을 지시하는 메시지를 상기 기지국으로 전송하는 단계를 더 포함할 수 있다. 상기 방법은 상기 단말이 선호하는 SRS 전송 설정을 요청하는 지시하는 메시지를 상기 기지국으로 전송하는 단계를 더 포함할 수 있다.
[11]
상기의 다른 기술적 과제를 달성하기 위한, SRS 설정 정보를 수신하기 위한 단말은, 수신기; 송신기; 및 프로세서를 포함하되, 상기 프로세서는 상기 수신기가 기지국으로부터 상기 단말에 대한 설정된 동시 전송 가능한 SRS 자원의 수에 대한 정보를 포함하는 상기 SRS 설정 정보를 수신하도록 제어하며, 상기 프로세서는 상기 송신기가 상기 SRS 설정 정보에 기초하여 SRS 전송을 수행하도록 제어할 수 있다.
[12]
상기 프로세서는 상기 송신기가 상기 단말이 동시 전송 가능한 SRS 자원의 수에 대한 정보를 포함하는 단말 능력(capability) 정보를 상기 기지국으로 전송하도록 제어하며, 상기 단말에 설정된 동시 전송 가능한 SRS 자원의 수는 상기 단말 능력 정보에 기초하여 결정된 것일 수 있다. 상기 SRS 설정 정보는 한 슬롯 내의 SRS 전송을 위한 심볼 수 정보, 상기 한 슬롯 내의 SRS 전송을 위한 심볼의 위치 정보 동일 빔에 맵핑되는 SRS의 심볼 수 정보, 상기 SRS 전송을 위해 상기 한 슬롯 내에서 동일한 빔을 적용할 지 여부를 지시하는 정보, 한 SRS 심볼에서의 SRS 자원 수의 정보 및 SRS 자원 당 맵핑되는 포트의 수의 정보 중 적어도 어느 하나를 더 포함할 수 있다.
[13]
상기 프로세서는 상기 송신기가 상기 단말의 동시 전송 가능한 SRS 포트 수의 정보, 상기 단말의 동시 전송 가능한 상향링크 빔 수의 정보, 상기 단말의 패널 수의 정보 및 상기 단말의 트랜시버 유닛(tranceiver Unit, TXRU) 수의 정보 중 적어도 어느 하나를 더 포함하는 단말 능력 정보를 상기 기지국으로 전송하도록 제어할 수 있으며, 상기 SRS 설정 정보는 상기 단말 능력 정보에 기초하여 결정된 것일 수 있다.
[14]
상기 기지국이 상기 SRS 설정 정보에서 설정한 SRS 설정 능력(capability)이 상기 단말의 단말 능력보다 높게 설정된 경우, 상기 프로세서는 상기 송신기가 상기 기지국의 SRS 설정이 잘못된 설정임을 지시하는 메시지를 상기 기지국으로 전송하도록 제어할 수 있다.

발명의 효과

[15]
본 발명의 실시예에 따라, NR 단말들의 능력(예를 들어, 빔포밍 능력)에 따라 사용하는 SRS 자원들에 대한 SRS 포트들과 SRS 자원 간의 맵핑을 해줄 수 있다. 이때, 이러한 SRS 설정을 위해 필요한 파라미터들, SRS 설정 방법(주기적, 비주기적, 반-지속적(semi-persistent)), 그리고 용도(UL beam management, UL channel estimation)따라 SRS 설정을 적응적으로 지정해 줄 수 있다.
[16]
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.

도면의 간단한 설명

[17]
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
[18]
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
[19]
도 2a는 상기 표 10에서의 Series of blockage event duration는 의미 있는 blockage가 발생하는 시간을 도시한 도면이고, 도 2b는 상기 표 10에서의 blockage duration (t D)를 도시한 도면이다.
[20]
도 3a TXRU virtualization model option 1(sub-array model)을 나타낸 도면이고, 도 3b는 TXRU virtualization model option 2(full connection model)을 나타낸 도면이다.
[21]
도 4는 하이브리드 빔포밍을 위한 블록도를 나타낸 도면이다.
[22]
도 5는 하이브리드 빔포밍에서 BRS 심볼들에 맵핑된 빔의 예를 도시한 도면이다.
[23]
도 6은 다른 numerology 간의 심볼/서브-심볼 alignment를 나타내는 예시적인 도면이다.
[24]
도 7은 26-length Golay Complementary Sequence pair 두 개를 이용한 52-길이 autocorrelation의 성능을 도시한 도면이다.
[25]
도 8은 길이 52의 Golay 시퀀스에서 서로 다른 CS를 갖는 시퀀스 사이의 cross-correlation을 도시한 도면이다.
[26]
도 9는 ZC, Golay, PN 시퀀스의 Cross-correlation 과 cubic-metric evaluation을 도시한 도면이다.
[27]
도 10은 SRS 전송 슬롯이 14개의 심볼들로 구성된 경우에 있어서의 SRS 전송을 위한 하나 또는 다수개의 SC-FDMA/OFDM 심볼 위치에 관한 예제를 나타낸 도면이다.
[28]
도 11은 주파수 측 SRS 자원 설정 및 포트 맵핑을 예시한 도면이다.
[29]
도 12는 SRS 자원-특정 TC 값 설정 및 SRS 자원 배치를 예시한 도면이다.
[30]
도 13은 OCC가 적용 예시한 도면이다.
[31]
도 14는 SRS 자원 인덱스 설정 예시(K>=1)한 도면이다.
[32]
도 15는 표 13의 단말 빔포밍 성능 인덱스가 0 일 때 SRS 설정을 예시(K=6)한 도면이다.
[33]
도 16은 단말의 최대 송신 빔 포트 수가 4개이고, SRS 자원 다중화 방식이 TDM only 경우를 예시하고 있다.
[34]
도 17은 단말의 최대 송신 빔 포트 수 4개이고, SRS 자원 간 FDM만 적용된 경우를 예시한 도면이다.
[35]
도 18은 단말의 최대 송신 빔 포트 수가 4개이고, SRS 자원 간 TDM 및 FDM 방식이 결합되어 적용되는 경우를 예시한 도면이다.
[36]
도 19는 SRS 시간/주파수 맵핑 예시(N=6, P=2, M=1, O=1)를 나타낸 도면이다.
[37]
도 20은 단말 빔포밍 성능에 의해 변한 SRS 전송을 예시(N=2, P=1, M=4, Q=1 -> N2=2, P2=1, M2=1, Q2=2)한 도면이다.
[38]
도 21은 셀 에지 단말의 경우 UL 전대역 채널 추정을 위한 N, P, M값의 설정을 예시한 도면이다.
[39]
도 22는 UL 특정 자원 영역 채널 추정 성능 향상을 위한 N, P, M 값의 설정에 대해 예시한 도면이다.
[40]
도 23은 N, P, M, Q의 값들을 위한 전송 설정(transmission configuration)을 예시한 도면이다.

발명의 실시를 위한 형태

[41]
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A, 5G 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
[42]
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
[43]
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point), gNode B 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.
[44]
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
[45]
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
[46]
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[47]
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
[48]
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
[49]
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
[50]
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
[51]
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
[52]
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
[53]
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
[54]
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
[55]
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
[56]
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
[57]
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
[58]
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
[59]
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
[60]
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
[61]
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
[62]
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
[63]
먼저, 3GPP LTE/LTE-A 시스템에서의 SRS(Sounding Reference Signal 또는 Sounding Reference Symbol) 전송과 관련된 내용을 다음 표 1에서 설명한다.
[64]
[표1]
A UE shall transmit Sounding Reference Symbol (SRS) on per serving cell SRS resources based on two trigger types: - trigger type 0: higher layer signalling - trigger type 1: DCI formats 0/4/1A for FDD and TDD and DCI formats 2B/2C/2D for TDD. In case both trigger type 0 and trigger type 1 SRS transmissions would occur in the same subframe in the same serving cell, the UE shall only transmit the trigger type 1 SRS transmission.A UE may be configured with SRS parameters for trigger type 0 and trigger type 1 on each serving cell. The following SRS parameters are serving cell specific and semi-statically configurable by higher layers for trigger type 0 and for trigger type 1. - Transmission comb , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - Starting physical resource block assignment nRRC , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - duration: single or indefinite (until disabled), as defined in [11] for trigger type 0 - srs-ConfigIndex ISRS for SRS periodicity TSRS and SRS subframe offset Toffset , as defined in Table 8.2-1 and Table 8.2-2 for trigger type 0 and SRS periodicity TSRS,1,and SRS subframe offset TSRS,1 , as defined in Table 8.2-4 and Table 8.2-5 trigger type 1 - SRS bandwidth BSRS , as defined in subclause 5.5.3.2 of [3] for trigger type 0 and each configuration of trigger type 1 - Frequency hopping bandwidth, bhop , as defined in subclause 5.5.3.2 of [3] for trigger type 0 - Cyclic shift , as defined in subclause 5.5.3.1 of [3] for trigger type 0 and each configuration of trigger type 1 - Number of antenna ports Np for trigger type 0 and each configuration of trigger type 1For trigger type 1 and DCI format 4 three sets of SRS parameters, srs-ConfigApDCI-Format4, are configured by higher layer signalling. The 2-bit SRS request field [4] in DCI format 4 indicates the SRS parameter set given in Table 8.1-1. For trigger type 1 and DCI format 0, a single set of SRS parameters, srs-ConfigApDCI-Format0, is configured by higher layer signalling. For trigger type 1 and DCI formats 1A/2B/2C/2D, a single common set of SRS parameters, srs-ConfigApDCI-Format1a2b2c, is configured by higher layer signalling. The SRS request field is 1 bit [4] for DCI formats 0/1A/2B/2C/2D, with a type 1 SRS triggered if the value of the SRS request field is set to '1'. A 1-bit SRS request field shall be included in DCI formats 0/1A for frame structure type 1 and 0/1A/2B/2C/2D for frame structure type 2 if the UE is configured with SRS parameters for DCI formats 0/1A/2B/2C/2D by higher-layer signalling.

[65]
다음 표 2는 3GPP LTE/LTE-A 시스템에서 DCI 포맷 4에서의 트리거 타입 1를 위한 SRS Request Value를 나타낸 표이다.
[66]
[표2]
Value of SRS request field Description
'00' No type 1 SRS trigger
'01' The 1st SRS parameter set configured by higher layers
'10' The 2nd SRS parameter set configured by higher layers
'11' The 3rd SRS parameter set configured by higher layers

[67]
다음 표 3은 3GPP LTE/LTE-A 시스템에서의 SRS 전송과 관련된 추가 내용을 더 설명하기 위한 표이다.
[68]
[표3]
The serving cell specific SRS transmission bandwidths CSRS are configured by higher layers. The allowable values are given in subclause 5.5.3.2 of [3].The serving cell specific SRS transmission sub-frames are configured by higher layers. The allowable values are given in subclause 5.5.3.3 of [3].For a TDD serving cell, SRS transmissions can occur in UpPTS and uplink subframes of the UL/DL configuration indicated by the higher layer parameter subframeAssignment for the serving cell.When closed-loop UE transmit antenna selection is enabled for a given serving cell for a UE that supports transmit antenna selection, the index a(nSRS), of the UE antenna that transmits the SRS at time nSRS is given bya(nSRS) = nSRS mod 2, for both partial and full sounding bandwidth, and when frequency hopping is disabled (i.e., ),when frequency hopping is enabled (i.e. ),where values BSRS, bhop, Nb, and nSRS are given in subclause 5.5.3.2 of [3], and (where regardless of the Nb value), except when a single SRS transmission is configured for the UE. If a UE is configured with more than one serving cell, the UE is not expected to transmit SRS on different antenna ports simultaneously.A UE may be configured to transmit SRS on Np antenna ports of a serving cell where Np may be configured by higher layer signalling. For PUSCH transmission mode 1 and for PUSCH transmission mode 2 with two antenna ports configured for PUSCH and with 4 antenna ports configured for PUSCH. A UE configured for SRS transmission on multiple antenna ports of a serving cell shall transmit SRS for all the configured transmit antenna ports within one SC-FDMA symbol of the same subframe of the serving cell. The SRS transmission bandwidth and starting physical resource block assignment are the same for all the configured antenna ports of a given serving cell.A UE not configured with multiple TAGs shall not transmit SRS in a symbol whenever SRS and PUSCH transmissions happen to overlap in the same symbol.For TDD serving cell, when one SC-FDMA symbol exists in UpPTS of the given serving cell, it can be used for SRS transmission. When two SC-FDMA symbols exist in UpPTS of the given serving cell, both can be used for SRS transmission and for trigger type 0 SRS both can be assigned to the same UE.If a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH format 2/2a/2b happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit type 0 triggered SRS whenever type 0 triggered SRS and PUCCH format 2/2a/2b transmissions happen to coincide in the same subframe; -The UE shall not transmit type 1 triggered SRS whenever type 1 triggered SRS and PUCCH format 2a/2b or format 2 with HARQ-ACK transmissions happen to coincide in the same subframe; -The UE shall not transmit PUCCH format 2 without HARQ-ACK whenever type 1 triggered SRS and PUCCH format 2 without HARQ-ACK transmissions happen to coincide in the same subframe.If a UE is not configured with multiple TAGs, or if a UE is configured with multiple TAGs and SRS and PUCCH happen to coincide in the same subframe in the same serving cell, -The UE shall not transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is FALSE; -For FDD-TDD and primary cell frame structure 1, the UE shall not transmit SRS in a symbol whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to overlap in the same symbol if the parameter ackNackSRS-SimultaneousTransmission is TRUE. -Unless otherwise prohibited, the UE shall transmit SRS whenever SRS transmission and PUCCH transmission carrying HARQ-ACK and/or positive SR using shortened format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe if the parameter ackNackSRS-SimultaneousTransmission is TRUE.A UE not configured with multiple TAGs shall not transmit SRS whenever SRS transmission on any serving cells and PUCCH transmission carrying HARQ-ACK and/or positive SR using normal PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3] happen to coincide in the same subframe.In UpPTS, whenever SRS transmission instance overlaps with the PRACH region for preamble format 4 or exceeds the range of uplink system bandwidth configured in the serving cell, the UE shall not transmit SRS.The parameter ackNackSRS-SimultaneousTransmission provided by higher layers determines if a UE is configured to support the transmission of HARQ-ACK on PUCCH and SRS in one subframe. If it is configured to support the transmission of HARQ-ACK on PUCCH and SRS in one subframe, then in the cell specific SRS subframes of the primary cell UE shall transmit HARQ-ACK and SR using the shortened PUCCH format as defined in subclauses 5.4.1 and 5.4.2A of [3], where the HARQ-ACK or the SR symbol corresponding to the SRS location is punctured. This shortened PUCCH format shall be used in a cell specific SRS subframe of the primary cell even if the UE does not transmit SRS in that subframe. The cell specific SRS subframes are defined in subclause 5.5.3.3 of [3]. Otherwise, the UE shall use the normal PUCCH format 1/1a/1b as defined in subclause 5.4.1 of [3] or normal PUCCH format 3 as defined in subclause 5.4.2A of [3] for the transmission of HARQ-ACK and SR.Trigger type 0 SRS configuration of a UE in a serving cell for SRS periodicity, TSRS, and SRS subframe offset, Toffset, is defined in Table 8.2-1 and Table 8.2-2, for FDD and TDD serving cell, respectively. The periodicity TSRS of the SRS transmission is serving cell specific and is selected from the set {2, 5, 10, 20, 40, 80, 160, 320} ms or subframes. For the SRS periodicity TSRS of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe(s) of the given serving cell. Type 0 triggered SRS transmission instances in a given serving cell for TDD serving cell with TSRS > 2 and for FDD serving cell are the subframes satisfying , where for FDD kSRS ={0, 1,,,,0} is the subframe index within the frame, for TDD serving cell kSRS is defined in Table 8.2-3. The SRS transmission instances for TDD serving cell with TSRS =2 are the subframes satisfying kSRS - Toffset . For TDD serving cell, and a UE configured for type 0 triggered SRS transmission in serving cell c, and the UE configured with the parameter EIMTA-MainConfigServCell-r12 for serving cell c, if the UE does not detect an UL/DL configuration indication for radio frame m (as described in section 13.1), the UE shall not transmit trigger type 0 SRS in a subframe of radio frame m that is indicated by the parameter eimta-HarqReferenceConfig-r12 as a downlink subframe unless the UE transmits PUSCH in the same subframe.Trigger type 1 SRS configuration of a UE in a serving cell for SRS periodicity, TSRS,1, and SRS subframe offset, Toffset,1, is defined in Table 8.2-4 and Table 8.2-5, for FDD and TDD serving cell, respectively. The periodicity TSRS,1 of the SRS transmission is serving cell specific and is selected from the set {2, 5, 10} ms or subframes. For the SRS periodicity TSRS,1 of 2 ms in TDD serving cell, two SRS resources are configured in a half frame containing UL subframe(s) of the given serving cell. A UE configured for type 1 triggered SRS transmission in serving cell c and not configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH/EPDCCH scheduling PUSCH/PDSCH on serving cell c.A UE configured for type 1 triggered SRS transmission in serving cell c and configured with a carrier indicator field shall transmit SRS on serving cell c upon detection of a positive SRS request in PDCCH/EPDCCH scheduling PUSCH/PDSCH with the value of carrier indicator field corresponding to serving cell c. A UE configured for type 1 triggered SRS transmission on serving cell c upon detection of a positive SRS request in subframe n of serving cell c shall commence SRS transmission in the first subframe satisfying and for TDD serving cell c with TSRS,1 > 2 and for FDD serving cell c, for TDD serving cell c with TSRS,1 =2where for FDD serving cell c is the subframe index within the frame nf , for TDD serving cell c kSRS is defined in Table 8.2-3.A UE configured for type 1 triggered SRS transmission is not expected to receive type 1 SRS triggering events associated with different values of trigger type 1 SRS transmission parameters, as configured by higher layer signalling, for the same subframe and the same serving cell.For TDD serving cell c, and a UE configured with EIMTA-MainConfigServCell-r12 for a serving cell c, the UE shall not transmit SRS in a subframe of a radio frame that is indicated by the corresponding eIMTA-UL/DL-configuration as a downlink subframe.A UE shall not transmit SRS whenever SRS and a PUSCH transmission corresponding to a Random Access Response Grant or a retransmission of the same transport block as part of the contention based random access procedure coincide in the same subframe.

[69]
다음 표 4는 FDD에서 트리거 타입 0을 위한 서브프레임 옵셋 설정(T offset) 및 UE-specific SRS periodicity (T SRS)를 나타낸 표이다.
[70]
[표4]
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 36 20 ISRS - 17
37 - 76 40 ISRS - 37
77 - 156 80 ISRS - 77
157 - 316 160 ISRS - 157
317 - 636 320 ISRS - 317
637 - 1023 reserved reserved

[71]
다음 표 5는 TDD에서 트리거 타입 0을 위한 서브프레임 옵셋 설정(T offset) 및 UE-specific SRS periodicity (T SRS)를 나타낸 표이다.
[72]
[표5]
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 36 20 ISRS -17
37 - 76 40 ISRS - 37
77 - 156 80 ISRS -77
157 - 316 160 ISRS - 157
317 - 636 320 ISRS -317
637 - 1023 reserved reserved

[73]
[표6]
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 2 0, 1
1 2 0, 2
2 2 1, 2
3 2 0, 3
4 2 1, 3
5 2 0, 4
6 2 1, 4
7 2 2, 3
8 2 2, 4
9 2 3, 4
10 - 14 5 ISRS - 10
15 - 24 10 ISRS - 15
25 - 44 20 ISRS - 25
45 - 84 40 ISRS - 45
85 - 164 80 ISRS - 85
165 - 324 160 ISRS - 165
325 - 644 320 ISRS - 325
645 - 1023 reserved reserved

[74]
표 7은 TDD를 위한 k SRS를 나타낸 표이다.
[75]
[표7]
subframe index n
0 1 2 3 4 5 6 7 8 9
1st symbol of UpPTS 2nd symbol of UpPTS 1st symbol of UpPTS 2nd symbol of UpPTS
kSRS in case UpPTS length of 2 symbols 0 1 2 3 4 5 6 7 8 9
kSRS in case UpPTS length of 1 symbol 1 2 3 4 6 7 8 9

[76]
다음 표 8은 FDD에서 트리거 타입 1을 위한 서브프레임 옵셋 설정(T offset,1) 및 UE-specific SRS periodicity (T SRS,1)를 나타낸 표이다.
[77]
[표8]
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 - 1 2 ISRS
2 - 6 5 ISRS - 2
7 - 16 10 ISRS - 7
17 - 31 reserved reserved

[78]
다음 표 9는 TDD에서 트리거 타입 1을 위한 서브프레임 옵셋 설정(T offset, 1) 및 UE-specific SRS periodicity (T SRS, 1)를 나타낸 표이다.
[79]
[표9]
SRS Configuration Index ISRS SRS Periodicity (ms) SRS Subframe Offset
0 reserved reserved
1 2 0, 2
2 2 1, 2
3 2 0, 3
4 2 1, 3
5 2 0, 4
6 2 1, 4
7 2 2, 3
8 2 2, 4
9 2 3, 4
10 - 14 5 ISRS - 10
15 - 24 10 ISRS - 15
25 - 31 reserved reserved

[80]
다음 표 10은 6Ghz 이상 채널의 6Ghz 이하 대비 추가적 채널 변화 특징(blockage effect)를 나타낸 표이다.
[81]
[표10]
Ref. Test description Tx height Rx height Test frequency Blockage rate relative parameter
[2] One blocker moving (1m/s)Horn(22.4dBi, 12˚)Patch(4.3dBi/2.2dBi, 58˚) 2.2/1.2m 1.2m 60GHz Series of Blockage event duration(threshold 5dB) 780~1839ms(Horn)640~1539ms(Patch)
4 blockers moving Series of Blockage event duration(threshold 5dB)688ms(Horn, average)278ms(Patch, average)
[5] 1~15 blockers movingThe horns(22.4 dBi, 12˚ in azimuth, about 10˚ in elevation)The patches (about 3 dBi, 60˚ both in elevation and azimuth. The vertical polarization) 1.58/2.77m 1.55m 60GHz Series of Blockage event duration
(Threshold 10dB)300ms(1~5 persons)350ms(6~10 persons)450ms(11~15 persons) (Threshold 20dB)100ms(1~5 persons)150ms(6~10 persons)300ms(11~15 persons)
[6] - - - 60GHz 93ms(Mean Drop Rate)
[7] One blocker moving(Walking speed)20dBi, 10˚ 1.1m 0.75m 67GHz tD =230ms (average, Threshold 20dB)
[8] One blocker moving(Walking speed)20dBi, 10˚ 1.1m 0.75m 67GHz tD =370ms ~820mstdecay =230ms (mean), 92ms(s.d)(Threshold 20dB)trising =220ms (mean), 100ms(s.d)(Threshold 20dB)

[82]
도 2는 상기 표 10과 관련하여 blocakage duration을 설명하기 위한 도면이다. 도 2a는 상기 표 10에서의 Series of blockage event duration는 의미 있는 blockage가 발생하는 시간을 도시한 도면이고, 도 2b는 상기 표 2에서의 blockage duration (t D)를 도시한 도면이다. Series of Blockage event는 의미있는 blockage가 발생하는 시간, t D는 blockage가 발생하여 다시 blockage 끝나고 정상 상태로 가는 시간을 나타낸다.
[83]
표 11은 t decay , t rising 과 단말과의 패턴 관계를 나타내기 위한 표이다.
[84]
[표11]
Walking (0.6m/s)[7] Sprinting(10m/s)[9] Swift Hand swing (43m/s)
tdecay , trising (ms) 150ms (measure) 9ms (calculation) 2.093ms(calculation)

[85]
상기 표 11에서의 blockage 변화는 기본적으로 평균 100ms(걷는 장애물 속도(4km/h)) 정도 이지만, 이것은 단말의 패턴 및 주변 환경에 따라, 2~수백 ms까지 다양하게 변할 수 있다.
[86]
아날로그 빔포밍 (Analog Beamforming )
[87]
Millimeter Wave(mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 element의 설치가 가능하다. 즉 30GHz 대역에서 파장은 1cm로써 4 by 4 cm의 panel에 0.5 lambda(파장) 간격으로 2-dimension 배열 형태로 총 64(8x8)의 안테나 element 설치가 가능하다. 그러므로 mmW에서는 다수개의 안테나 element를 사용하여 빔포밍(BF) 이득을 높여 커버리지를 증가시키거나 쓰루풋(throughput)을 높일수 있다.
[88]
이 경우에 안테나 element 별로 전송 파워 및 위상 조절이 가능하도록 TXRU(Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나, 100여개의 안테나 element 모두에 TXRU를 설치하기에는 비용 측면에서 실효적이지 못하다. 그러므로 하나의 TXRU에 다수개의 안테나 element를 맵핑(mapping)하고 아날로그 위상 쉬프터(analog phase shifter)로 빔의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍을 해줄 수 없는 단점이 있다.
[89]
디지털 빔포밍(Digital BF)와 아날로그 빔포밍(analog BF)의 중간 형태로 Q개의 안테나 element보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍(하이브리드 BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 element의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
[90]
도 3a TXRU virtualization model option 1(sub-array model)을 나타낸 도면이고, 도 3b는 TXRU virtualization model option 2(full connection model)을 나타낸 도면이다.
[91]
도 3a 및 도 3b는 TXRU와 안테나 element의 연결 방식의 대표적인 일 예들을 나타낸다. 여기서 TXRU virtualization 모델은 TXRU의 출력 신호와 antenna elements의 출력 신호의 관계를 나타낸다. 도 3a는 TXRU가 sub-array에 연결된 방식을 나타내는데, 이 경우에 안테나 element는 하나의 TXRU에만 연결된다. 이와 달리 도 3b는 TXRU가 모든 안테나 element에 연결된 방식을 나타내는데, 이 경우에 안테나 element는 모든 TXRU에 연결된다. 도 3a 및 도 3b에서 W는 아날로그 위상 쉬프터에 의해 곱해지는 위상 벡터를 나타낸다. 즉 W에 의해 아날로그 빔포밍의 방향이 결정된다. 여기서 CSI-RS 안테나 포트들과 TXRU들과의 맵핑은 1-to-1 또는 1-to-many 일 수 있다.
[92]
하이브리드 빔포밍 (Hybrid Beamforming )
[93]
도 4는 하이브리드 빔포밍을 위한 블록도를 나타낸 도면이다.
[94]
New RAT 시스템에서는 다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법의 사용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF 빔포밍)은 RF 단에서 프리코딩(Precoding) (또는 컴바이닝(Combining))을 수행하는 동작을 의미한다. 상기 하이브리드 빔포밍 기법은 Baseband 단과 RF 단은 각각 프리코딩(Precoding) (또는 컴바이닝(Combining))을 방식을 사용함으로써 RF chain 수와 D/A (또는 A/D) converter 수를 줄이면서도 Digital 빔포밍에 근접하는 성능을 낼 수 있다는 장점을 가진다. 설명의 편의상 도 4에 도시한 바와 같이 상기 하이브리드 빔포밍 구조는 N개 Transceiver unit (TXRU)와 M개의 물리적 안테나로 표현될 수 있다. 그러면, 송신 측에서 전송할 L개 Data layer에 대한 디지털 빔포밍은 N by L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환된 다음 M by N 행렬로 표현되는 아날로그 빔포밍이 적용된다.
[95]
이때, 도 4에서 디지털 빔의 개수는 L개 이며, 아날로그 빔의 개수는 N개이다. 더 나아가서 New RAT 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방향을 고려하고 있다. 더 나아가, 도 4에서 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, New RAT 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려하고 있다.
[96]
기지국이 복수의 아날로그 빔을 활용하는 경우 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있으므로, 기지국은 적어도 동기 신호(Synchronization signal), 시스템 정보(System information), 페이징(Paging) 등에 대해서는 특정 서브프레임(SF)에서 기지국이 적용할 복수 아날로그 빔들을 심볼 별로 바꾸어 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 동작을 고려할 수 있다.
[97]
도 5는 하이브리드 빔포밍에서 BRS 심볼들에 맵핑된 빔의 예를 도시한 도면이다.
[98]
도 5는 하향링크(DL) 전송 과정에서 동기 신호와 시스템 정보에 대해 상기 빔 스위핑 동작을 도식화하여 도시하고 있다. 도 5에서 New RAT 시스템의 시스템 정보가 브로드캐스팅 방식으로 전송되는 물리 자원(또는 물리 채널)을 xPBCH(physical broadcast channel)으로 명명하였다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시 전송될 수 있으며, 아날로그 빔 별 채널을 측정하기 위해 도 5에 도시한 바와 같이 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 Reference signal (RS)인 Beam RS (BRS)를 도입하는 방안을 고려할 수 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 도 5에서는 빔을 측정하기 위한 RS(Reference Signal)로 사용되는 RS로 BRS로 명명하였으나 다른 호칭으로 명명될 수도 있다. 이때, BRS와는 달리 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 group 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
[99]
도 6은 다른 numerology 간의 심볼/서브-심볼 alignment를 나타내는 예시적인 도면이다.
[100]
New RAT( NR ) Numerology 특징
[101]
NR에서는 Scalable Numerology를 지원하는 방식을 고려하고 있다. 즉 NR의 subcarrier spacing은 (2n×15)kHz, n은 정수로 나타내고 있으며, nested 관점에서 위의 subset 또는 superset (at least 15,30,60,120,240, and 480kHz)가 주요 subcarrier spacing으로 고려되고 있다. 이에 따른 동일한 CP 오버헤드 비율을 갖도록 조절함으로써 다른 numerology 간의 심볼 또는 서브-심볼 alignment를 지원하도록 설정되었다.
[102]
또한, 각 서비스들(eMMB, URLLC, mMTC) 과 시나리오들(high speed 등등)에 따라 위의 시간/주파수 granularity가 dynamic 하게 할당되는 구조로 numerology가 결정된다.
[103]
직교화를 위한 대역폭 의존/ 비의존 시퀀스 (Bandwidth dependent/non-dependent sequence for orthogonalization )
[104]
LTE 시스템은 사운딩 대역폭(sounding bandwidth)에 따라 SRS 설계를 다르게 설계한다. 즉 길이 24 이하의 시퀀스 설계 경우 computer generated 시퀀스를 사용 하고, 36(3RB) 이상 경우 Zadoff-Chu(ZC) 시퀀스를 사용한다. ZC 시퀀스의 가장 큰 장점은 low PAPR 또는 low Cubic Metric을 나타내며, 동시에 이상적인 autocorrelation 과 낮은 cross-correlation 성질을 가지는 것이다. 그러나, 위의 성질을 만족하기 위해서는 필요한 시퀀스들의 길이(사운딩 대역폭을 나타냄)가 같아야 한다. 따라서, 다른 사운딩 대역폭들 갖는 단말들을 지원하기 위해서는 다른 자원 영역에 할당해주는 방법이 필요하고, 채널 추정 성능 열화를 최소화할 수 있게 IFDMA comb 구조가 서로 다른 사운딩 대역폭을 갖게 하여 동시 전송하는 단말들의 직교성을 지원하였다. 만약에 작은 사운딩 대역폭을 갖는 단말에 이러한 transmission comb (TC) 구조를 사용하게 되면, 직교성을 갖는 최소한의 시퀀스 길이(일반적으로 길이 24로 나타냄)보다 적은 시퀀스 길이를 갖게 될 수도 있어서, TC는 2로 한정하게 되었다. 동일 사운딩 자원에 동일 TC를 갖게 하는 경우 직교성을 제공하는 dimension이 필요하고, 이것이 Cyclic Shift를 이용한 CDM을 사용하는 것이다.
[105]
한편, PAPR 과 correlation 성능이 ZC 계열 시퀀스들에 비해 조금 떨어질 수 있지만, 사운딩 대역폭에 상관없이 자원 맵핑이 가능한 시퀀스들이 있다. 그 예로서 Golay 시퀀스와 PN(Pseudo random) 시퀀스가 있다. Golay 시퀀스 경우 어떤 시퀀스 a, b의 각 autocorrelation 값을 A a, A b 라고 할 때, 이 두 개의 autocorrelation 값의 합이 다음의 조건을 만족하게 하는 a, b를 Golay complementary 시퀀스 pair라고 부른다(A a + A b =δ(x)).
[106]
일 예로서, 길이 26의 Golay 시퀀스 a,b가 다음과 같을 때, a=[1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1], b=[-1 1 -1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1], 이 두 개를 연접하여 총 52 길이의 시퀀스로 구성하여, 양쪽 4개의 RE(Resource Element)에 0을 맵핑할 때, Auto-correlation 성능은 도 7과 같이 나타낼 수 있다. 도 7은 26-length Golay Complementary Sequence pair 두 개를 이용한 52-길이 autocorrelation의 성능을 도시한 도면이다.
[107]
도 8은 길이 52의 Golay 시퀀스에서 서로 다른 CS를 갖는 시퀀스 사이의 cross-correlation을 도시한 도면이다.
[108]
길이 52로 구성한 시퀀스에 다수의 CS(Cyclic Shift)를 적용하여, 다수 개의 Golay 시퀀스를 생성할 수 있다. 서로 다른 CS를 갖는 Golay 시퀀스 사이의 Cross-correlation를 도 8에 도시한 것과 같다.
[109]
도 9는 ZC, Golay, PN 시퀀스의 Cross-correlation 과 cubic-metric evaluation을 도시한 도면이다.
[110]
ZC, Golay, PN 사이의 관계를 각 TC가 1,2,4 일 경우에 따른 CM(cubic metric)와 cross-correlation을 계산하고 비교하였다. 평가를 위한 가정은 다음과 같다.
[111]
- 사운딩 대역폭(sounding BW)는 각 4,8,12,16,20,24,32,36,48RB로 정한다. (LTE SRS 설계 기반)
[112]
- LTE 시스템과 같이 30 groups number 는 다음과 같이 결정하고, 는 셀 ID 기반으로 결정한다. 이때, 4RB에서는 하나의 base 시퀀스 v를 선택하고, 나머지는 두 개의 base sequence number v를 선택한다.
[113]
- Golay 시퀀스 경우 802.16m 시스템에서의 길이 2048의 truncated binary Golay 시퀀스를 이용하였고, QPSK PN 시퀀스을 independent 대역폭 SRS 설계 예시로 보였다. 이때, ZC 시퀀스에서 30 group을 나타내기 위해, Golay 시퀀스는 30 CS를 이용하여 생성하였고, PN은 Matlab 기반으로 30개의 시퀀스를 생성하여 사용하였다.
[114]
- TC=1,2 와 4로 평가하였다.
[115]
- Cubic metric 평가는 더 좋은 resolution을 위해 over sampling factor(OSF)를 8로 정하였다.
[116]
도 9에서 (a) 도면을 살펴보면, cross correlation 성능은 ZC>Golay>PN 시퀀스 순으로 나타났으며, CM 성능은 ZC>Golay>PN 순 이였다. UL 전송을 위한 SRS 시퀀스 생성 관점에서 LTE 시스템와 같이 ZC 계열이 좋은 성능으로 보이지만, 사운딩 대역폭(sounding 대역폭)의 각 단말의 할당 자유도를 높이기 위해서는 Golay 시퀀스 또는 PN 시퀀스도 New RAT의 SRS 시퀀스 후보로 배제할 수는 없다.
[117]
단말들은 성능(capability)(예를 들어, beamforming capability)로서 하드웨어적인 안테나/패널(panel) 구조 등을 암시적(implicit)으로 나타낼 수 있다. 또한 각 단말은 기지국에 의해 설정된 포트 세트(port set)에서 상황에 따라 선택적인 포트 서브세트(port subset)을 선택하여 전송할 수 있다(UE Tx 송신 전력이 한계 환경에 있는 단말이 선택적인 포트 서브세트로 더 높은 송신 전력으로 기지국에 SRS를 전송 가능함). 따라서, 선택된 포트 서브세트 또는 특정 빔들의 서브세트를 나타내는 SRS 자원들을 적응적으로 보낼 수 있는 설정이 필요하다. 또한, 한 포트에 맵핑되는 각 단말의 송신 빔(Tx beam)은 상향링크 빔 매니지먼트(UL beam management) 정책(예를 들어, UE Tx beam sweeping, TRP Rx beam sweeping, 혹은 UE Tx beam sweeping 및 TRP Rx beam sweeping 모두)에 따라 하나 또는 다수 개의 상향링크(UL) 전송 instance (하나의 UL 전송 instance는 하나의 심볼 또는 하나의슬롯(slot) 으로 설정될 수 있음)에 전송될 수 있어야 한다. 또한, UL 채널 추정 용도를 위해 SRS 전송 시 특히 셀 에지(cell edge)에 있는 단말의 경우, 송신 전력으로 인해 UE Tx beam/TRP Rx beam의 페어(pair)에 따른 채널 추정 대역폭 영역이 제한될 수 있고, Full BW 전송이 요구될 때에는 동일 pair에 여러 개의 partial band SRS 전송 instance로 전송될 수 있다. 이러한 다양한 NR 시스템의 SRS 전송 설정에 따라 SRS 자원들/포트들 맵핑이 고려될 필요가 있다.
[118]
NR RAT에서는 SRS는 하나 또는 다수개의 single-carrier frequency division multiple access(SC-FDMA)/orthogonal frequency-division multiplexin (OFDM) 심볼 상에서 전송되고, 이러한 SRS 전송은 1개 이상(예를 들어, K>1개)의 SRS 자원들상에서 수행될 수 있다. 기지국은 DCI(Downlink Control Information)(포맷), MAC-CE 또는 상위 계층 시그널링을 통해 단말에게 SRI(Sounding RS indicator) (혹은 SRS 자원 지시자(SRS resource indicator) 등 다양하게 명명 가능)를 전송할 수 있다. 상기 SRI는 단말을 위한 각 SRS 자원들을 지시해 주며, 특히 SRS 자원들의 수에 대해 지시해 줄 수 있다. 또한, 상기 SRI는 SRS 전송 시 하나 또는 다수의 빔 또는 포트를 지시할 수 있으며, SRS 자원 설정에 따라 단말의 서로 다른 Tx beam 또는 같은 Tx beam을 가리킬 수 있다. 또한, UL은 DL 과 달리 PAPR(peak-to-average power), CM(cubic metric)이 낮은 값을 갖도록 설계되어야 하는 제약이 있어서, 다른 채널과의 주파수 측에서 다중화하는 FDM 방식은 설계 고려 시 그러한 가급적이면 회피하는 것이 좋다. 단, 이것은 UL beam management 또는 채널 추정 용도로 단일 SRS 심볼과 함께 다른 UL 채널이 함께 FDM 되어 전송을 할 수 없음을 말하는 것은 아니다. 각 단말의 SRS BW 자유도를 LTE 시스템과 같이 주어지게 하고, 이러한 관점에서 UL 채널 추정 성능을 높이기 위해 LTE 시스템과 같이 IFDMA 구조는 (즉, transmission comb (TC) 값 관련한 구조) 유지되어야 유리하다. 이러한 조건에서 NR에서 지원되는 SRS 포트인 1,2,4, 또는 8 포트 등의 전송이 SRS 전송 instance에서 보장되는 구조가 되어야 한다.
[119]
도 10은 SRS 전송 슬롯이 14개의 심볼들로 구성된 경우에 있어서의 SRS 전송을 위한 하나 또는 다수개의 SC-FDMA/OFDM 심볼 위치에 관한 예제를 나타낸 도면이다.
[120]
도 10은 SRS가 심볼 인덱스 11, 12, 13에 대응되는 연속된 3개의 SC-FDMA/OFDM 심볼 상에서 전송되는 상황을 예시하고 있다. 도 14는 슬롯 크기를 14개 심볼로 예시하고 있으나, 슬롯 크기는 7개의 SC-FDMA/OFDM 심볼로 구성될 수도 있다. SRS 전송 instance(예를 들어, SRS 전송 슬롯)에서의 SRS 심볼 수를 나타내는 설정은 SRS 전송의 트리거링 시에 기지국이 DCI, RRC(Radio Resource Control) 시그널링 또는 MAC-CE 등를 통해 단말에게 전송할 수 있다.
[121]
SRS 전송 BW 내에서 SRS 자원들이 설정되고, 총 N 개의 SRS 전송 심볼들 내에서 총 N×J=K개의 SRS 자원들로 구성되도록 설정될 수 있다. 또한, SRS BW가 연접된 SRS (Concatenated SRS) 구조로 다수 개의 localized SRS Unit 단위로 구성 되고(즉, L개 localized SRS unit), 총 N 개의 심볼이 SRS 심볼들로 설정될 때, 한 SRS 자원이 localized SRS Unit 내에서 U개로 설정된다면, N×L×U=K (단 L×U=J)개가 될 수 있도록 설정될 수 있다.
[122]
하나의 SRS 자원에는 SRS 설정에 따라 1,2,4,8 또는 다른 개수의 포트들이 맵핑 될 수 있고, 포트들 사이의 직교성을 위해, 각 포트들은 한 SRS 자원 사이에서 FDM 맵핑 되거나, 같은 자원 위치에서 사용하되 CDM 맵핑이 될 수 있다. 코드 분할 다중화(CDM) 사용 시 ZC 계열은 TC(Transmission Comb)/CS(Cyclic Shift)를 이용 할 수 있고, PN 계열은 TC/OCC(Orthogonal Cover Code)를 이용할 수 있다. NR에서 TC 값은 2 또는 4가 될 수 있고, TC 값은 셀-특정 또는 단말-특정하게 기지국이 단말에게 상위 계층 시그널링(예를 들어, RRC 시그널링), MAC-CEM 또는 DCI를 통해 전송할 수 있다. 여기서 TC는 각 SRS 자원에 맵핑되는 시퀀스를 독립적으로 설계한다면, 사운딩 대역폭(BW) 내의 동일 SRS 자원 간의 주파수 측 자원요소(Resource Element, RE) 간격 수로 정의될 수 있다. 따라서, 각 SRS 자원의 맵핑은 TC 옵셋(offset) 값을 서로 다르게 함으로써 설정될 수 있다. 이러한 구조의 장점은 주어진 SRS BW 내에 서로 다른 길이를 갖는 SRS 자원(즉, 각 SRS 자원에 맵핑 되는 시퀀스 길이가 다름)들의 다중화 시 UL 채널 추정 성능 열화를 최소화시킬 수 있다. 또한, 각 SRS 자원 길이에 대한 자유도를 갖게 하고, 각 SRS 자원들을 맵핑하는 기준은 각 단말 빔포밍 성능(UE beamforming capability)(예를 들어, 단말의 TXRU(transceiver unit) 수, 패널 수, 안테나 어레이(array) 구성 등)에 따라 나타나는 한 단말의 SRS BW 내에 주파수 측에 할당할 수 있는 SRS 자원 수 M과 각 자원 내의 맵핑 되는 포트 수에 의해 다양하게 구성되는 SRS 구조를 TC 값과 TC offset 값으로 간단히 설정할 수 있다. 단, 주파수 측의 서로 다른 자원 사이에는 서로 다른 빔이 사용된다고 가정한다.
[123]
일 예로서, 단말의 단말 빔포밍 성능(UE beamforming capability)에 따라 단말의 동시 전송을 위한 SRS 자원 수(M)=2 라고 하고, 한 SRS 자원 당 맵핑 가능한 포트 수가 8개라고 하면, 기지국은 SRS 자원 당 맵핑 가능한 포트 수 8을 고려해 TC 값을 계산하여 TC=2로 설정하고, 이때, 두 개의 서로 다른 빔으로 동시 전송을 위해서, 하나의 SRS 자원의 TC offset 값은 0, 나머지 하나의 SRS 자원의 TC offset 값을 1로 설정한 후, TC 값 및 TC offset 값을 단말에 지시할 수 있다.
[124]
이하, SRS 자원 설정과 맵핑 패턴 관련한 예시들을 설명한다.
[125]
도 11은 주파수 측 SRS 자원 설정 및 포트 맵핑을 예시한 도면이다.
[126]
도 11에서 (a) 경우, 각 SRS 자원 당 TC는 8로 유지되며, 그 SRS BW 내에서 다른/같은 TC(예를 들어, TC=2,4,8 등)를 갖는 단말과의 FDM이 가능한 구조이다. 각 SRS 자원에 맵핑되는 시퀀스 길이는 24(BW 16RB 기준)로 동일하게 설정될 수 있다. RB(Resource Block) 당 하나의 SRS 자원 RE 수는 1.5 density (즉 1.5 RE/RB)를 갖는 구조이다.
[127]
도 11에서 (b) 경우, 각 SRS 자원 당 TC는 8로 유지되지만, 다른 단말과의 다중화를 위해서는 다른 단말의 TC가 8로 동일해야 하며, TC offset 값도 SRS 자원 별로 서로 다른 값들로 설정되어야 한다. 각 SRS 자원에 맵핑되는 시퀀스 길이는 24(BW 16RB 기준)로 동일하다. RB 당 하나의 SRS 자원 RE 수는 1.5 density를 갖게 된다(즉 1.5 RE/RB).
[128]
도 11에서 (c) 경우, 서로 다른 길이의 SRS 자원을 갖는 경우(예를 들어, SRS 자원 #0 길이=48,SRS 자원 #4 길이=24)를 나타낸 것이다. 각 SRS 자원 당 TC는 8로 나타낸다. 48 길이를 갖는 SRS 자원들은 RB 당 하나의 SRS 자원 RE 수는 1.5 density이지만, 24 길이를 갖는 SRS 자원들은 RB 당 SRS 자원 RE 수는 0.75 density를 갖는다. 단 16 RB 기준으로 localized 된 형태이다. SRS 자원 #4의 시퀀스 맵핑 시작점은 16 RB 시작점이 될 수 있다.
[129]
도 11에서 (d) 경우, TC=4 이므로 도 11의 (a), (b), (c)와 대비하면 더 좋은 UL 채널 추정 성능을 갖게 된다. 또한, RPF 값이 (a), (b), (c)의 경우가 낮아서 CS(Cyclic Shift)로 더 많은 SRS 포트가 할당될 수 있다(여기서는 8 포트를 맵핑함). 그러나, 제 2 단말이 SRS가 제 1 단말의 SRS BW 내에서 FDM 방식으로 제 1 단말의 SRS와 함께 전송될 수는 없다. 제 1 단말이 할당된 SRS BW 위치에 UL 채널 추정을 원하는 제 2 단말이 있다면, 제 2 단말의 SRS 전송은 다음 SRS 전송 instance에서나 가능할 수 있다.
[130]
도 12는 SRS 자원-특정 TC 값 설정 및 SRS 자원 배치를 예시한 도면이다.
[131]
TC 값은 SRS 자원-특정하게 설정될 수도 있다. 도 12에 도시된 바와 같이, 4개의 SRS 자원이 설정될 때, 각 SRS 자원 마다 다른 TC 값과 TC offset 값을 intra-SRS 자원 간, 다른 단말 간 오버랩핑이 되지 않도록 설정될 수 있다.
[132]
다른 실시예로서, OCC 적용하는 경우를 예시한다. PN이나 Golay 시퀀스를 사용 시에서는 각 동일 자원들 중 자원을 그룹핑하여 다음 표 12 예시의 직교 커버 코드(OCC)값 이 곱해진 값으로 전송될 수 있다. OCC 값은 하나의 연속된 SRS 자원에 곱해지며, 이 때, 값은 하나의 SRS 자원에 맵핑되는 포트 수와 같다. 표 12는 직교 커버 코드(OCC)의 예시로서 =4인 경우를 나타낸다.
[133]
[표12]
[134]
도 13은 OCC ( =4) 가 적용 예시한 도면이다.
[135]
도 13은 한 SRS 자원 당 포트 수는 4개, 심볼 당 SRS 자원 수가 4인 경우를 예시하고 있다. 도 13과 같이 SRS 자원 #0, SRS 자원 #1의 4개 RE 들을 그룹핑한 후 해당 포트 에 따른 OCC가 곱해 질 수 있다.
[136]
이하에서는 SRS 자원 설정을 포함하는 SRS 설정을 수행하는 방법들에 대해 살펴본다.
[137]
제안 1
[138]
기지국이 단말에게 복수의 SRS 자원을 설정하는 경우에, SRS 자원 간 다중화 방식으로 다음과 같은 대안들(Alternatives)을 지원하되, 각 단말의 빔 포밍 능력(beamforming capability), 파워 능력(power capability)(예를 들어, power boosting range), 및/또는 단말의 무선 환경(예를 들어, cell-centered UE/cell-edge UE)에 따라, 해당 단말에 대한 SRS 자원 다중화 방식을 결정할 수 있다. 이 경우, 기지국은 단말이 전송한 빔 포밍 능력(beamforming capability), 파워 능력(power capability)(예를 들어, power boosting range), 및/또는 단말의 무선 환경에 대한 정보에 기초하여 SRS 자원 다중화 방식을 결정할 수도 있다. 기지국은 결정된 SRS 자원들의 다중화 방식에 대한 정보를 SRS 자원 설정 정보에 포함시켜 단말에게 전송해 줄 수 있다.
[139]
대안 1(Alt 1): 각 SRS 자원은 슬롯(혹은 SRS 전송 슬롯) 내의 서로 다른 심볼에서 전송에서 시간 분할 다중화(TDM) 방식으로 다중화되어 전송될 수 있다.
[140]
대안 2(Alt 2): 각 SRS 자원은 슬롯(혹은 SRS 전송 슬롯) 내의 서로 다른 심볼 및/또는 subcarrier set에서 TDM 방식 혹은 주파수 분할 다중화(FDM) 방식으로 다중화되어 전송될 수 있다.
[141]
대안 3(Alt 3): 각 SRS 자원들은 슬롯(혹은 SRS 전송 슬롯) 내의 동일 심볼의 서로 다른 subcarrier set에서 FDM 방식으로 다중화되어 전송될 수 있다.
[142]
도 14는 SRS 자원 인덱스 셋팅 예시(K>=1)한 도면이다.
[143]
도 14에서 (a)는 상기 대안 1(Alt 1)의 SRS 자원 설정을 예시하고, (b)는 대안 2(Alt 2)의 SRS 자원 설정 예시(L=2,J=K/2)하고, (c)는 대안 3(Alt 3)의 SRS 자원 설정을 예시하고 있다.
[144]
제안 2
[145]
단말은 단말 성능(예를 들어, 단말 빔포밍 성능(UE beamforming capability) 정보를 기지국에 전송할 수 있다. 단말 성능 정보는 한 단말의 동시 전송 가능한 SRS 포트 및 동시 전송을 위한 SRS 자원 수, 혹은 상향링크 빔의 수, 단말의 TXRU의 수, 단말의 패널 수에 대한 정보 등을 포함할 수 있다. 기지국은 단말의 성능 정보에 따라 단말의 SRS 자원 설정을 수행하고 단말에게 SRS 자원 설정 정보를 전송해 줄 수 있다. 각 SRS 자원 설정에는 한 슬롯 내의 SRS 전송을 위한 심볼 수 (N) 및/또는 위치, 동일 UL Tx 빔에 맵핑되는 SRS 심볼 수를 나타내는 인덱스 P 또는 한 슬롯 내에서 동일 UL Tx 빔을 적용할 지 다른 빔을 적용할 지에 대한 지시자 정보, 그리고 한 SRS 심볼에서 SRS 자원 수 M, SRS 자원 당 맵핑 되는 포트 수 (Q)가 포함될 수 있다. 상기 N, M, P, 또는/및 Q 값 등은 단말 성능(예를 들어, 단말 빔포밍 성능) 정보에 따라 그 조합의 제약이 발생할 수 있다.
[146]
단말이 동일 SRS 빔을 복수 개의 SRS 심볼에서 전송하는 것은 기지국이 상향링크 수신 빔을 트래킹(tracking)하는 용도로 활용 가능하도록 하는 것일 수 있다. 단말이 서로 다른 SRS 빔을 복수 개의 SRS 심볼들 상에서 전송하는 경우에, 기지국은 복수 개의 SRS 심볼들 상에서 전송된 서로 다른 SRS 빔 중에서 단말의 상향링크 송신 빔을 선택할 수 있다.
[147]
[표13]
[148]
상기 표 13을 참조하면, 단말 빔포밍 성능 정보에 단말 빔포밍 성능 인덱스가 포함될 수 있다. 단말 빔포밍 성능 인덱스는 단말의 최대 송신 안테나 포트들의 수(예를 들어, SRS 전송을 위한 단말의 최대 송신 안테나 포트들의 수) 및 SRS 자원 다중화 방식을 지시할 수 있다. 예를 들어, 단말 빔포밍 성능 인덱스가 '2'이면 단말의 최대 송신 안테나 포트들의 수는 2개이며, SRS 자원 다중화 방식은 방식 1 및 방식 2 모두를 지원할 수 있음을 지시할 수 있다.
[149]
제안 2-1
[150]
기지국은 단말 빔포밍 성능의 최대 송신 안테나 포트의 수가 1인 경우, SRS 자원 간 TDM만 지원(제안 1의 Alt 1)하고, TDM 구성에 대한 정보(SRS의 심볼 수 N, 동일 UL Tx 빔에 맵핑되는 SRS의 심볼 수를 나타내는 인덱스 P, SRS의 심볼 당 SRS 자원 수 M, SRS 자원 당 맵핑 되는 포트 수 Q 등)를 단말에게 제공 혹은 전송할 수 있다. 제공 시에, 기지국은 TDM 구성을 나타내는 인덱스로 전송하거나, 한 SRS 심볼에서 SRS 자원 수 M=1 값으로 전송할 수 있다.
[151]
도 15는 표 13의 단말 빔포밍 성능 인덱스가 0 일 때 SRS 설정을 예시(K=6)한 도면이다.
[152]
기지국이 단말 빔포밍 성능 정보에서 최대 안테나 포트들의 수가 1(표 13의 인덱스 '0'로 보고 받은 경우)인 경우, 기지국은 이 단말의 TXRU 수가 1개로 인식하여, 한 심볼 당 전송할 수 있는 SRS 자원이 1개 밖에 없다. 이때, 기지국이 전체 SRS 자원 수 K=6인 것으로 결정하면, 위의 TDM only(제안 1의 Alt 1) 구조임을 나타내는 정보를 SRS 트리거링시 단말에게 전송하고, N=6, P=6, M=1, Q=1 값을 지시하는 정보를 전송할 수 있다. 따라서, 도 15에 도시된 바와 같이 6개의 SRS 자원들이 TDM 되어 전송되고, 이때, 각 SRS 자원은 동일 송신 빔(Tx beam)을 가리키는 설정이다. 도 15에서 N은 SRS의 심볼 수, P는 동일 UL Tx 빔에 맵핑되는 SRS의 심볼 수를 나타내는 인덱스, M은 SRS의 심볼 당 SRS 자원 수, Q는 SRS 자원 당 맵핑 되는 포트 수이다.
[153]
제안 2-2
[154]
단말 빔포밍 성능에서 단말의 최대 송신 포트 수가 2 이상이고, SRS 자원 간 TDM/FDM이 지원되는 단말로 지시하는 경우, 기지국은 SRS 자원 간 TDM/FDM 둘 다 지원할 수 있기 때문에, 최대 송신 포트 수에 따라 SRS 자원 간의 TDM only 또는 FDM only 또는 TDM/FDM 지원 중 어느 하나를 선택할 수 있다.
[155]
도 16은 단말의 최대 송신 빔 포트 수가 4개이고, SRS 자원 다중화 방식이 TDM only 경우를 예시하고 있다.
[156]
실시 예로서, 단말 빔포밍 성능에서 최대 Tx 포트 수 4이고, TDM/FDM 지원 경우 (표 13의 단말 빔포밍 성능 인덱스=4인 경우), 기지국이 SRS 자원 간의 TDM only를 선택 시, SRS 자원은 1개로 설정하고, 그 SRS 자원에 맵핑되는 포트 수는 4개로 설정한다. SRS 자원 수 K=6 일 경우 도 15와 같이 전송될 수 있다. 이때, 기지국은 N=6, P=1, M=1, Q=4로 결정하고, 이를 단말에 전송할 수 있다.
[157]
이러한 경우, 한 SRS 심볼은 하나의 SRS 자원으로 구성되고, 이때, 그 SRS 자원에는 4개의 SRS 포트가 맵핑되는 구조이며, 각 심볼은 서로 다른 송신(Tx) 빔을 가리킴을 나타내는 구조이다.
[158]
도 17은 단말의 최대 송신 빔 포트 수 4개이고, SRS 자원 간 FDM만 적용된 경우를 예시한 도면이다.
[159]
도 17에서 (a)는 SRS 자원의 수를 4로 설정한 경우를 나타내고, (b)는 SRS 자원의 수를 2로 설정한 경우를 나타내고 있다.
[160]
기지국이 SRS 자원 다중화 방식으로서 SRS 자원 간 FDM only인 구조 혹은 FDM 및 TDM가 결합된 구조를 선택한다면, 한 심볼에 다중화될 수 있는 SRS 자원 수를 단말의 빔포밍 성능, 즉, TXRU-to-안테나 맵핑 방식 및 안테나 subarray 별 독립적인 빔포밍 가능 여부에 기초하여 결정할 수 있다. 예를 들어, TXRU-to-안테나 맵핑 구조가 subarray partitioning 구조, 즉 전체 안테나 어레이가 subarray 단위로 그룹핑되고, 각 subarray마다 하나씩의 TXRU가 맵핑되는 구조라고 하자. 만약 TXRU가 4개이라고 하면, subarray 단위로 독립적인 빔 설정이 가능한 경우, 한 심볼에 최대 4개의 SRS 빔이 FDM될 수 있다. 이 경우 도 17의 (a)와 같이, 각 빔은 하나의 TXRU에 의해 생성되므로 SRS 빔 당 포트 수는 1개 일 것이다(즉, N=1, P=1, M=4, Q=1).
[161]
또한, 두 subarray씩 묶어서 빔포밍을 적용할 수도 있으며, 이 경우 도 17의 (b)와 같이 한 심볼에 FDM되는 SRS 자원이 2개로 설정될 수 있다. 이때에는 빔 당 TXRU 개수가 2이므로 non-precoded SRS 포트 전송을 가정하면 각 SRS 자원에 두 개의 SRS 포트들이 전송될 수 있다(예를 들어, N=1, P=1, M=2, Q=2, 여기서 Q는 심볼 별로 SRS 자원 당 SRS 포트 수, M은 SRS 심볼 별로의 다중화된 SRS 자원의 수이다).
[162]
도 18은 단말의 최대 송신 빔 포트 수가 4개이고, SRS 자원 간 TDM 및 FDM 방식이 결합되어 적용되는 경우를 예시한 도면이다.
[163]
도 18의 (a)는 한 심볼에 SRS 자원의 수를 4개로 설정한 경우를, (b)는 한 심볼에 SRS 자원의 수를 2개로 설정한 경우를 예시하고 있다.
[164]
도 18의 (a)와 같이 SRS 자원 간 FDM 및 TDM이 결합된 방식이 선택된다면, SRS 자원 수 K=8이고, 한 심볼에 할당되는 SRS 자원 수가 4인 경우, N=2, P=1, M=4, Q=1로 나타낼 수 있다. 도 18의 (b)와 같이 SRS 자원 간 FDM 및 TDM이 결합된 방식이 선택된다면 SRS 자원 수 K=8이고, 한 심볼에 할당되는 SRS 자원 수가 2인 경우, N=4, P=1, M=2, O=2로 나타낼 수 있다.
[165]
제안 2-3
[166]
기지국은 단말의 단말 성능 정보 보다 SRS 전송 설정 성능(예를 들어, N, P, M, Q 값)을 더 낮게 설정할 수 있다.
[167]
도 19는 SRS 시간/주파수 맵핑 예시(N=6, P=2, M=1, O=1)를 나타낸 도면이다.
[168]
단말 성능 정보 보다 기지국이 결정한 SRS 전송 설정(N, P, M, O)이 낮게 설정된 예시를 설명한다. 단말 빔포밍 성능이 상기 표 13과 같이 정의되었다고 하자. 단말이 단말의 단말 빔포밍 성능 인덱스 4 (즉, 최대 송신 포트 수가 4개, 그리고 SRS 자원 간 TDM/FDM 설정 가능)를 기지국에 전송하였지만, 단말 빔포밍 성능 정보를 수신한 기지국은 기지국 자체 SRS 전송 정책에 따라 더 낮은 단말 빔포밍 성능에 맞게 N, P, M, Q를 설정할 수 있다. 일 예로서 도 18에 도시한 바와 같이, 3 Rx TRP beams에 대한 UL beam management를 위한 SRS 전송 설정을 지시하기 위하여, SRS 전송 심볼 수 N=6, 동일 Tx 빔 맵핑 SRS 심볼 수 P=2, 한 심볼 당 SRS 자원 수 M=1, SRS 자원 당 포트 수 Q=1로 설정할 수 있다. 따라서, 단말은 한 심볼에 1 포트를 적응적으로 보낼 수 있으며, 총 3 X 1 개의 빔을 SRS instance에서 나타낼 수 있다. TRP 수신(Rx) 빔은 연속적인 2개의 SRS 심볼 마다 스위핑(sweeping) 하게 된다.
[169]
제안 2-4
[170]
단말 빔포밍 성능보다 기지국이 결정한 SRS 전송 설정 성능(예를 들어, N, P, M, Q값)가 높게 설정되면, 단말은 잘못된 SRS 설정으로 선언하고, 기지국에 잘못된 SRS 설정이라고 알려주는 메시지를 PUCCH(Physical Uplink Control CHannel) 또는 PUSCH(Physical Uplink Shared CHannel)로 전송한다. 상기 메시지는 잘못된 SRS 설정임을 지시하는 지시자(예를 들어, 플래그(flag))를 포함할 수 있다. 또한, 선택적으로, 상기 메시지는 그 단말의 최대 가능 N1, P1, M1, Q1의 값들 및/또는 상기 N1, P1, M1, Q1 중 서브세트가 포함될 수 있다. 기지국이 상기 메시지를 수신 하면 SRS 설정을 위한 N, P, M, O 값을 N≤N1, P≤P1, M<=M1, O<=O1가 될 수 있도록 SRS를 재설정할 수 있다.
[171]
제안 2-5
[172]
단말 빔포밍 성능 보다 기지국이 결정한(혹은 설정한) SRS 전송 설정 성능(예를 들어, N, P, M, O값)가 높게 설정되면, 단말은 단말 성능 정보에 따른 단말의 성능을 고려하여 SRS를 전송하고, SRS 전송 설정이 단말의 요구로 바뀌었음을 알리는 메시지를 기지국에 전송할 있다. 이 메시지에는 SRS 전송 설정이 단말의 요구로 바뀌었음을 알리는 지시자(예를 들어, 플래그(flag) 등)을 포함할 수 있다. 선택적으로 이 메시지는 바뀐 N2, P2, M2, Q2의 값(각 N2, P2, M2, Q2 등은 그 단말의 최대 가능 N1, P1, M1, Q1 보다는 같거나 작은 값이 될 수 있다) 및/또는 N2, P2, M2, Q2 중 서브세트를 포함할 수 있다. 단말은 이 서브세트에 해당하는 값에 기초하여 SRS 전송을 수행할 수 있다.
[173]
도 20은 단말 빔포밍 성능에 의해 변한 SRS 전송을 예시(N=2, P=1, M=4, Q=1 -> N2=2, P2=1, M2=1, Q2=2)한 도면이다.
[174]
도 20을 참조하면, 단말이 단말 성능 정보를 상기 표 13의 단말 성능 정보 인덱스가 1로 기지국에 보고할 수 있다. 이때, 기지국은 단말 성능 정보 인덱스를 4로 잘못 인지하여 도 19에 도시한 바와 같이 N=2, P=1, M=4, Q=1와 같은 SRS을 설정하였다. 그러나, 그 단말의 빔포밍 성능 인덱스가 1이므로 전송 가능 포트 수는 2개이고, SRS 자원들은 TDM 방식으로만 다중화 가능하기 때문에, 단말은 M2=1, Q2=2로 하여, SRS를 설정 및 전송하고, PUSCH 또는 PUCCH에서 바뀐 SRS 설정 정보인 M2=1, Q2=2를 SRS 전송 메시지에 포함하여 기지국에 전송한다. 기지국은 SRS를 검출 전에 이 SRS 전송 메시지에 관한 메시지를 획득하고, 이 수정된 SRS 설정에 맞추어 SRS를 검출한다.
[175]
제안 3
[176]
단말은 SRS 전송에 대한 설정 중 선호하는 방법 혹은 설정을 기지국에 요청할 수 있다. 이 요청을 지시하는 요청 메시지 정보는 선호하는(desired) SRS 자원 다중화 방법(예를 들어, SRS 자원들 간의 TDM only, FDM only, 혹은 TDM 및 FDM의 결합 방식) 및/또는 선호하는 SRS 자원들을 다중화하는 경우 SRS 심볼 수 (N), 동일 빔이 맵핑되는 심볼 수 (P), 한 심볼 당 SRS 자원 수 (M), SRS 자원 당 SRS 포트 수 Q를 지시하는 정보가 포함할 수 있다. 이때, N, P, M, Q들 중 적어도 하나 이상이 상기 요청 메시지에 포함될 수 있다.
[177]
일 실시예로서, 송신 전력 부스팅에 한계가 있는 단말(PA limitation 단말)은 빔포밍 성능으로 SRS 자원 간 FDM이 가능한 구조를 가지고 있지만, SRS 자원 간 TDM only 구조를 요구하는 메시지를 기지국에 전송할 수 있다. 따라서, 기지국은 한 SRS 심볼에 1개 SRS 자원만 설정하고, 단말에 M=1을 지시할 수 있다. 단말은 한 심볼 당 하나의 SRS 자원으로 구성하고, 한 심볼 당 하나의 SRS 자원 상에서 SRS를 전송할 수 있다.
[178]
제안 4
[179]
UL 채널 추정용 SRS 전송 시 SRS 심볼 수 (N), 동일 빔 맵핑 SRS 심볼 수 (P), SRS 심볼 당 SRS 자원 수 (M), SRS 자원 당 포트 수 (Q)과 함께 SRS 주파수 호핑 패턴도 단말의 환경에 따라 구성될 수 있다.
[180]
셀 에지에 있는 단말이 최상의 단말 송신 빔/TRP 수신 빔의 페어(best UE Tx beam/TRP Rx beam pair)들에 대한 전 UL BW 채널 추정이 요구될 때, 기지국은 UL 전 BW/현 시점에서 전송 가능 최대 SRS BW만큼 P 값을 결정하고, 각 심볼 당 주파수 호핑 패턴을 단말에 제공하여, UL 전대역 채널 추정을 수행할 수 있도록 설정한다.
[181]
셀 에지에 있는 단말이 특정 UL 대역에 대한 정밀한 채널 추정이 요구될 때에는, 기지국이 P값을 결정할 수 있으며 주파수 호핑은 하지 않게 설정할 수 있다. P의 개수에 따라 기지국은 컴바이닝(combining) 수행을 가능하게 한다.
[182]
최상의 단말 송신 빔/TRP 수신 빔의 페어(best UE Tx beam/TRP Rx beam pair)들은 하향링크 빔 관리(DL beam management) RS 측정으로 reciprocity 특성에 기초하여 결정되거나, 전송된 non-precoded SRS에 기초하여 결정되거나, 이전에 전송된 상향링크 빔 관리(UL Beam management) RS에 기초하여 결정될 수 있다.
[183]
도 21은 셀 에지 단말의 경우 UL 전대역 채널 추정을 위한 N, P, M값의 설정을 예시한 도면이다.
[184]
도 21은 최상의 단말 송신 빔/TRP 수신 빔의 페어(best UE Tx beam/TRP Rx beam pair)들에 대한 UL 전대역 채널 추정이 필요할 때의 호핑 패턴을 예시하고 있다.
[185]
어떤 네트워크에서 UL 전대역이 200RB 일때, link budget 계산을 통해, 전송 가능 UL BW가 50RB인 단말이 있다고 하자. 전송 가능 UL SRS BW가 전 UL BW에 정수로 나누어지지 않는 경우(예를 들어, 60 RB), 기지국은 UL SRS BW를 50RB로 정할 수 있다. 이때, 단말의 단말 성능 정보 인덱스는 상기 표 13에서 '4'(단말의 최대 송신 포트 수=4, SRS 자원들 간의 다중화 방식으로 TDM 및 FDM의 결합 방식 가능)임을 기지국으로 보고한다. 기지국은 UL 전대역 채널 추정을 위해, P=200RB/50RB=4로 설정하고, 두 개의 최상의 빔 페어(best beam pair)를 위해서 SRS 전송을 위한 심볼 수 N을 8로, 한 SRS 심볼 당 SRS 자원 수 M을 1로 각각 설정할 수 있고, 다음 표 14에서 호핑 패턴(예를 들어, 주파수 호핑 패턴) 인덱스 0를 P에 대하여 지시하면, 단말은 SRS instance에서 도 20에서와 같이 SRS를 전송할 수 있다.
[186]
기지국은 주파수 호핑 패턴을 비트맵(bitmap)으로 단말에게 직접 지시하거나, scramble seed를 이용하여 초기화하여 사용할 수 있다. 따라서, 기지국이 최상의 단말 송신 빔 #0(best Tx beam #0)과 대응되는 최상의 TRP 수신 빔을 통해 4개 심볼의 SRS를 수신하고, 다음 최상의 단말 송신 빔 #1과 대응되는 최상의 TRP 수신 빔을 통해 다음 4개 심볼의 SRS를 수신하도록 설정될 수 있다. 표 14는 P=4인 경우 (주파수) 호핑 패턴을 예시한 표이다.
[187]
[표14]
[188]
도 22는 UL 특정 자원 영역 채널 추정 성능 향상을 위한 N, P, M 값의 설정에 대해 예시한 도면이다.
[189]
도 22는 최상의 단말 송신 빔/TRP 수신 빔의 페어(best UE Tx beam/TRP Rx beam pair)들에 대한 특정 UL 대역 채널의 강화를 예시하고 있다. N=8, P=4 경우, 단말은 처음 최상의 단말 송신 빔/TRP 수신 빔의 페어(best UE Tx beam/TRP Rx beam pair)에서의 SRS 3 영역(도 22에서 '3'으로 표시된 영역)의 채널 추정 성능 향상을 위해 SRS 3 영역에서 4개 심볼을 통해 SRS를 전송하고, 다음 최상의 단말 송신 빔/TRP 수신 빔의 페어(best UE Tx beam/TRP Rx beam pair)에서의 SRS 2 영역(도 22에서 '2'로 표시된 영역)의 채널 추정 성능 향상을 위해 SRS 2 영역에서 4개의 SRS 심볼를 통해 SRS를 전송한다. 이러한 설정을 위해서 P 값에 따라 단말 송신 빔/TRP 수신 빔 페어가 유지되어야 한다.
[190]
제안 5
[191]
기지국은 시그널링 오버헤드를 고려하여 SRS 심볼 수 (N), 동일 빔 맵핑 SRS 심볼 수 (P), 심볼 당 전송 포트 수 (M)를 다음과 같은 옵션들 중 하나로 전송할 수 있다. 비주기적 SRS 트리거링의 경우, 기지국은 1) N, P, M, Q의 값들은 DCI 포맷을 통해 전송하거나, 2) N 값은 상위 계층 시그널링(예를 들어, RRC 시그널링)을 통해 전송하고 P, M, Q의 값들은 DCI 포맷을 전송하거나, 3)N, P의 값은 상위 계층 시그널링를 통해 전송하고, M, Q의 값들만 DCI 포맷을 통해 전송하거나, 4) N, P, M의 값들은 상위 계층 시그널링을 통해 전송하고, Q값만 DCI 포맷을 통해 전송하거나, 5) W={N, P, M, Q} 중에서 서브세트 Z(서브세트 Z는 configurable)는 DCI 포맷을 통해 전송하고 서브세트 W/Z는 상위 계층 시그널링을 통해 전송할 수 있다.
[192]
주기적 SRS 전송의 경우, 기지국은 1) N, P, M, Q의 값들은 상위 계층 시그널링을 통해 전송하거나 2) W={N, P, M, Q} 중에서 서브세트 Z(서브세트 Z는 configurable)는 DCI 포맷을 통해 전송하고 서브세트 W/Z는 상위 계층 시그널링을 통해 전송할 수 있다.
[193]
반-지속적 SRS(Semi-persistent SRS)의 경우에는, 기지국은 1)N, P, M, Q의 값들은 MAC-CE를 통해 전송하거나, 2) N값은 상위 계층 시그널링을 통해 전송하고, P, M, Q의 값들은 MAC-CE를 통해 전송하거나, 3) N, P의 값들은 상위 계층 시그널링을 통해 전송하고 M, Q의 값들은 MAC-CE를 통해 전송하거나, 4) N, P, M의 값은 상위 계층 시그널링을 통해 전송하고 Q 값만 MAC-CE를 통해 전송할 수 있다. 4)의 경우 N, P, M의 값들은 반-지속적 SRS 활성화(activation)시키기 위한 용도로 사용될 수 있고 비활성화(Deactivation)를 위한 지시는 DCI를 통해 전송되거나 또는 비활성화는 타이머(timer)로 동작될 수 있다. 기지국은 5) W={N, P, M, Q} 중에서 서브세트 Z(서브세트 Z는 configurable)는 DCI 포맷을 통해 전송하고, 서브세트 W/Z는 상위 계층 시그널링으로 전송할 수 있다.
[194]
도 23은 N, P, M, Q의 값들을 위한 전송 설정(transmission configuration)을 예시한 도면이다.
[195]
도 23의 (a)의 경우, 기지국(gNB)은 비주기적 SRS 설정을 위한 N, P, M, Q의 값들을 DCI 포맷을 통해 전송할 수 있다. 기지국은 DCI 포맷을 통해 SRS 전송을 지시하고, 이때, N, P, M, Q의 값들 또한 DCI 포맷을 통해 단말에게 전송할 수 있다. SRS가 트리거링(triggering) 될 때마다, 기지국은 N0, P0, M0, Q0의 값들을 DCI 포맷을 통해 전송하고, 다음 SRS가 트리거링될 때, N1, P1, M1, Q1을 DCI 포맷을 통해 전송할 수 있다. 도 23의 (b)의 경우, 기지국은 비주기적 SRS 설정을 위한 P, M, Q의 값들을 DCI 포맷을 통해 전송할 수 있다.
[196]
이상에서 설명한 본 발명의 제안들 및 실시예들은 기지국은 단말로부터 보고된 빔포밍 성능, 전력 전송 성능, 단말의 무선 환경을 고려하여 SRS 전송 시 SRS 심볼 수, 동일 송신 빔이 맵핑되는 SRS 심볼 수, SRS 심볼 당 전송 포트 수 등을 설정하여 다양한 형태의 SRS를 전송할 수 있도록 지시해 줄 수 있다.
[197]
이상에서 설명된 실시예들 및 제안들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
[198]
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

산업상 이용가능성

[199]
SRS 설정 정보를 수신하는 방법 및 이를 위한 단말 3GPP LTE/LTE-A 시스템, 5G 통신 시스템 등과 같은 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.

청구범위

[청구항 1]
단말이 사운딩 참조 신호(Sounding Reference Symbol, SRS) 설정 정보를 수신하는 방법에 있어서, 기지국으로부터 상기 단말에 대한 설정된 동시 전송 가능한 SRS 자원의 수에 대한 정보를 포함하는 상기 SRS 설정 정보를 수신하는 단계; 및 상기 SRS 설정 정보에 기초하여 SRS 전송을 수행하는 단계를 포함하는, SRS 설정 정보 수신 방법.
[청구항 2]
제 1항에 있어서, 상기 단말이 동시 전송 가능한 SRS 자원의 수에 대한 정보를 포함하는 단말 능력(capability) 정보를 상기 기지국으로 전송하는 단계를 더 포함하며, 상기 단말에 설정된 동시 전송 가능한 SRS 자원의 수는 상기 단말 능력 정보에 기초하여 결정된 것인, SRS 설정 정보 수신 방법.
[청구항 3]
제 1항에 있어서, 상기 SRS 설정 정보는 한 슬롯 내의 SRS 전송을 위한 심볼 수 정보, 상기 한 슬롯 내의 SRS 전송을 위한 심볼의 위치 정보 동일 빔에 맵핑되는 SRS의 심볼 수 정보, 상기 SRS 전송을 위해 상기 한 슬롯 내에서 동일한 빔을 적용할 지 여부를 지시하는 정보, 한 SRS 심볼에서의 SRS 자원 수의 정보 및 SRS 자원 당 맵핑되는 포트의 수의 정보 중 적어도 어느 하나를 더 포함하는, SRS 설정 정보 수신 방법.
[청구항 4]
제 3항에 있어서, 상기 단말의 동시 전송 가능한 SRS 포트 수의 정보, 상기 단말의 동시 전송 가능한 상향링크 빔 수의 정보, 상기 단말의 패널 수의 정보 및 상기 단말의 트랜시버 유닛(tranceiver Unit, TXRU) 수의 정보 중 적어도 어느 하나를 더 포함하는 단말 능력 정보를 상기 기지국으로 전송하는 단계를 더 포함하며, 상기 SRS 설정 정보는 상기 단말 능력 정보에 기초하여 결정된 것인, SRS 설정 정보 수신 방법.
[청구항 5]
제 1항에 있어서, 상기 SRS 설정 정보는 SRS 자원들 간의 다중화 방식을 지시하는 정보를 더 포함하는, SRS 설정 정보 수신 방법.
[청구항 6]
제 5항에 있어서, 상기 지시된 다중화 방식은 상기 단말의 단말 능력 정보에 기초하여 결정된 것인, SRS 설정 정보 수신 방법.
[청구항 7]
제 6항에 있어서, 상기 단말 능력 정보는 상기 SRS 전송을 위한 최대 송신 안테나 포트들의 수 및 상기 최대 송신 안테나 포트들의 수에 대응되는 상기 SRS 자원들 간의 다중화 방식을 지시하는 정보를 포함하는, SRS 설정 정보 수신 방법.
[청구항 8]
제 1항에 있어서, 상기 기지국이 상기 SRS 설정 정보에서 설정한 SRS 설정 능력(capability)이 상기 단말의 단말 능력보다 높게 설정된 경우, 상기 기지국의 SRS 설정이 잘못된 설정임을 지시하는 메시지를 상기 기지국으로 전송하는 단계를 더 포함하는, SRS 설정 정보 수신 방법.
[청구항 9]
제 1항에 있어서, 상기 단말이 선호하는 SRS 전송 설정을 요청하는 지시하는 메시지를 상기 기지국으로 전송하는 단계를 더 포함하는, SRS 설정 정보 수신 방법.
[청구항 10]
제 1항에 있어서, 상기 SRS 설정 정보는 상기 단말을 위해 설정된 SRS 주파수 호핑 패턴과 관련된 정보를 더 포함하는, SRS 설정 정보 수신 방법.
[청구항 11]
사운딩 참조 신호(Sounding Reference Symbol, SRS) 설정 정보를 수신하기 위한 단말에 있어서, 수신기; 송신기; 및 프로세서를 포함하되, 상기 프로세서는 상기 수신기가 기지국으로부터 상기 단말에 대한 설정된 동시 전송 가능한 SRS 자원의 수에 대한 정보를 포함하는 상기 SRS 설정 정보를 수신하도록 제어하며, 상기 프로세서는 상기 송신기가 상기 SRS 설정 정보에 기초하여 SRS 전송을 수행하도록 제어하는, 단말.
[청구항 12]
제 11항에 있어서, 상기 프로세서는 상기 송신기가 상기 단말이 동시 전송 가능한 SRS 자원의 수에 대한 정보를 포함하는 단말 능력(capability) 정보를 상기 기지국으로 전송하도록 제어하며, 상기 단말에 설정된 동시 전송 가능한 SRS 자원의 수는 상기 단말 능력 정보에 기초하여 결정된 것인, 단말.
[청구항 13]
제 11항에 있어서, 상기 SRS 설정 정보는 한 슬롯 내의 SRS 전송을 위한 심볼 수 정보, 상기 한 슬롯 내의 SRS 전송을 위한 심볼의 위치 정보 동일 빔에 맵핑되는 SRS의 심볼 수 정보, 상기 SRS 전송을 위해 상기 한 슬롯 내에서 동일한 빔을 적용할 지 여부를 지시하는 정보, 한 SRS 심볼에서의 SRS 자원 수의 정보 및 SRS 자원 당 맵핑되는 포트의 수의 정보 중 적어도 어느 하나를 더 포함하는, 단말.
[청구항 14]
제 13항에 있어서, 상기 프로세서는 상기 송신기가 상기 단말의 동시 전송 가능한 SRS 포트 수의 정보, 상기 단말의 동시 전송 가능한 상향링크 빔 수의 정보, 상기 단말의 패널 수의 정보 및 상기 단말의 트랜시버 유닛(tranceiver Unit, TXRU) 수의 정보 중 적어도 어느 하나를 더 포함하는 단말 능력 정보를 상기 기지국으로 전송하도록 제어하며, 상기 SRS 설정 정보는 상기 단말 능력 정보에 기초하여 결정된 것인, 단말.
[청구항 15]
제 11항에 있어서, 상기 기지국이 상기 SRS 설정 정보에서 설정한 SRS 설정 능력(capability)이 상기 단말의 단말 능력보다 높게 설정된 경우, 상기 프로세서는 상기 송신기가 상기 기지국의 SRS 설정이 잘못된 설정임을 지시하는 메시지를 상기 기지국으로 전송하도록 제어하는, 단말.

도면

[도1]

[도2a]

[도2b]

[도3a]

[도3b]

[도4]

[도5]

[도6]

[도7]

[도8]

[도9]

[도10]

[도11]

[도12]

[도13]

[도14]

[도15]

[도16]

[도17]

[도18]

[도19]

[도20]

[도21]

[도22]

[도23]