Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2018143486) METHOD FOR PROVIDING CONTENT USING MODULARIZING SYSTEM FOR DEEP LEARNING ANALYSIS
Latest bibliographic data on file with the International Bureau    Submit observation

Pub. No.: WO/2018/143486 International Application No.: PCT/KR2017/001030
Publication Date: 09.08.2018 International Filing Date: 31.01.2017
IPC:
G06F 17/30 (2006.01) ,G06N 3/02 (2006.01)
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
F
ELECTRIC DIGITAL DATA PROCESSING
17
Digital computing or data processing equipment or methods, specially adapted for specific functions
30
Information retrieval; Database structures therefor
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
N
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3
Computer systems based on biological models
02
using neural network models
Applicants:
(주)한국플랫폼서비스기술 KOREA PLATFORM SERVICE TECHNOLOGY CO., LTD. [KR/KR]; 대전시 서구 문정로40번길 64, 203호 #203, 64, Munjeong-ro 40beon-gil, Seo-gu, Daejeon 35261, KR
Inventors:
이준혁 LEE, Jun Hyeok; KR
백승복 BAEK, Seung Bok; KR
Agent:
황창옥 HWANG, Chang Og; KR
Priority Data:
10-2017-001383231.01.2017KR
Title (EN) METHOD FOR PROVIDING CONTENT USING MODULARIZING SYSTEM FOR DEEP LEARNING ANALYSIS
(FR) PROCÉDÉ DE FOURNITURE DE CONTENU UTILISANT UN SYSTÈME DE MODULARISATION POUR ANALYSE D'APPRENTISSAGE PROFOND
(KO) 딥러닝 분석을 위한 모듈화시스템을 이용한 컨텐츠 제공 방법
Abstract:
(EN) The present invention relates to a method for providing content using a modularizing system for deep learning analysis, and to a method for providing content through analysis of input video and non-video data by using a deep learning analysis technique. To this end, a method for providing content using a modularizing system for deep learning analysis comprises the steps of: inputting raw data by using the modularizing system for deep learning analysis, which consists of a standard API interface unit (11), an image object DB (12), a deep learning algorithm module (13), a training data set storage (14), and an application service DB (15) (S10); reading the raw data (S20); determining a processing module according to the read data (S30); applying the processing module (S40); processing data (S50); and generating content (S60).
(FR) La présente invention concerne un procédé de fourniture de contenu utilisant un système de modularisation pour une analyse d'apprentissage profond, et un procédé de fourniture de contenu par l'analyse de données vidéo et non vidéo d'entrée en utilisant une technique d'analyse d'apprentissage profond. Pour ce faire, un procédé de fourniture de contenu utilisant un système de modularisation pour une analyse d'apprentissage profond comprend les étapes suivantes : entrée de données brutes en utilisant le système de modularisation pour une analyse d'apprentissage profond, qui est constitué d'une unité d'interface API standard (11), d'une base de données d'objets d'image (12), d'un module d'algorithme d'apprentissage profond (13), d'une mémoire d'ensemble de données d'apprentissage (14) et d'une base de données de service d'application (15) (S10) ; lecture des données brutes (S20) ; détermination d'un module de traitement conformément aux données lues (S30) ; application du module de traitement (S40) ; traitement des données (S50) ; et génération du contenu (S60).
(KO) 본 발명은 딥러닝 분석을 위한 모듈화시스템을 이용한 컨텐츠 제공 방법에 대한 것으로, 딥러닝 분석 기법을 활용하여, 입력된 영상 및 비영상 자료의 분석을 통하여 컨텐츠를 제공하는 방법에 대한 것이다. 이를 위해, 딥러닝 분석을 위한 모듈화시스템을 이용한 컨텐츠 제공 방법은 표준 API인터페이스부(11), 이미지 객체DB(12), 딥러닝 알고리즘 모듈(13), 훈련 데이터셋 저장소(14) 및 응용 서비스DB(15)로 구성되는 딥러닝 분석을 위한 모듈화시스템을 이용하여, 원시데이터 입력 단계(S10), 원시데이터 판독 단계(S20), 판독된 데이터에 따른 처리 모듈 판단 단계(S30), 처리 모듈 적용 단계(S40), 데이터 처리단계(S50) 및 컨텐츠 생성 단계(S60)로 구성된다.
front page image
Designated States: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
African Regional Intellectual Property Organization (ARIPO) (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW)
Eurasian Patent Office (AM, AZ, BY, KG, KZ, RU, TJ, TM)
European Patent Office (EPO) (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)
Publication Language: Korean (KO)
Filing Language: Korean (KO)