Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2018139741) BATTERY PACK AND VEHICLE CONNECTED TO BATTERY PACK
Document

명세서

발명의 명칭

기술분야

1  

배경기술

2   3  

발명의 상세한 설명

기술적 과제

4  

과제 해결 수단

5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22  

발명의 효과

23  

도면의 간단한 설명

24   25   26   27   28   29  

발명의 실시를 위한 형태

30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95  

청구범위

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23  

도면

1   2   3   4   5   6  

명세서

발명의 명칭 : 배터리 팩 및 배터리 팩이 연결된 차량

기술분야

[1]
본 개시는 배터리 팩 및 배터리 팩이 연결된 차량에 관한 것이다.

배경기술

[2]
종래 배터리 팩에서 대전류가 흐르는 파워경로(path)의 연결 상태를 실시간으로 감지를 할 수 없다. 대전류가 흐르는 파워 경로는 배터리 모듈 내의 버스 바(bus bar), 배터리 모듈 간의 배선(wire), 배터리 팩과 부하 간의 배선(wire) 등을 포함한다.
[3]
파워 경로 상의 버스 바 간 또는 버스 바와 배선 간의 체결을 위한 나사(Screw) 또는 볼트(bolt)가 풀리거나, 배선의 노후로 인해접촉 저항이 증가할 수 있다. 이런 상태에서 대 전류가 흐르면, 증가한 접촉 저항으로 인해 고열이 발생하고, 고열로 인한 2차 사고(Melt, fire, 등)가 발생할 수 있다. .

발명의 상세한 설명

기술적 과제

[4]
대 전류 경로 상의 접촉 저항 증가로 인한 고열 발생을 사전에 감지할 수 있고, 호스트 시스템(host system)에 경고 메시지를 전달하여 운행 정지를 유도하여 고열 발생으로 인한 2차 사고를 사전에 예방을 할 수 있는 배터리 팩 및 이에 연결된 차량을 제공하고자 한다.

과제 해결 수단

[5]
발명의 한 특징에 따른 호스트 시스템에 연결되어 있는 배터리 팩은, 상기 배터리 팩의 배터리 단자와 상기 호스트 시스템 사이에 연결되어 있는 릴레이, 직렬 연결되어 있는 복수의 셀을 포함하고, 배터리 감지 정보를 생성하는 적어도 두 개의 배터리 모듈, 및 상기 배터리 팩과 상기 호스트 시스템 간의 대전류 경로 상에 소정치 이상의 전류가 흐를 때, 상기 배터리 단자의 전압을 측정하고, 상기 적어도 두 개의 배터리 모듈 각각으로부터 적어도 두 개의 배터리 감지 정보를 수신하며, 상기 배터리 단자 전압 및 상기 적어도 두 개의 배터리 감지 정보에 기초하여 상기 배터리 팩의 결합 상태를 판단하는 BMS를 포함한다.
[6]
상기 BMS는, 상기 적어도 두 개의 배터리 모듈 중 하나의 복수의 셀 전압을 합한 전압에 기초한 배터리 팩 전압과 상기 배터리 단자 전압 간의 차를 상기 소정치 이상의 전류로 나누어 저항을 산출할 수 있다.
[7]
상기 적어도 두 개의 배터리 모듈 중 하나는, 상기 적어도 두 개의 배터리 모듈 중 상기 BMS에 인접한 배터리 모듈이고, 상기 저항은, 상기 BMS와 상기 적어도 두 개의 배터리 모듈 중 하나 사이에 연결되어 있는 단자, 버스바, 퓨즈 및 배선의 저항들의 합에 대응할 수 있다.
[8]
상기 BMS는, 상기 저항이 소정의 임계치 이상이면, 상기 적어도 두 개의 배터리 모듈 중 하나와 상기BMS 사이의 결합 상태에 이상이 있는 것으로 판단할 수 있다.
[9]
상기 BMS는, 상기 적어도 두 개의 배터리 모듈 중 각각의 복수의 셀 전압을 합한 전압에 기초한 적어도 두 개의 배터리 팩 전압 중 가장 높은 전압과 가장 낮은 전압 간의 차를 상기 소정치 이상의 전류로 나누어 저항을 산출할 수 있다.
[10]
상기 저항은, 상기 적어도 두 개의 배터리 모듈 각각의 단자, 버스바, 및 퓨즈의 저항들의 합 및 상기 적어도 두 개의 배터리 모듈 간의 배선의 저항의 합에 대응할 수 있다.
[11]
상기 BMS는, 상기 저항이 소정의 임계치 이상이면, 상기 적어도 두 개의 배터리 모듈 간의 결합 상태에 이상이 있는 것으로 판단할 수 있다.
[12]
상기 BMS는, 상기 적어도 두 개의 배터리 모듈 각각의 양단의 배터리 모듈 전압이 대응하는 소정의 정상 범위보다 작은 전압이면, 상기 정상 범위보다 작은 전압인 배터리 모듈의 결합 상태에 이상이 있는 것으로 판단할 수 있다.
[13]
상기 정상 범위는, 상기 적어도 두 개의 배터리 모듈 각각에서 바라본 저항 값에 따라 다를 수 있다. 상기 적어도 두 개의 배터리 모듈 각각에서 바라본 저항 값이 작을수록 대응하는 정상 범위가 높을 수 있다.
[14]
상기 결합 상태에 이상이 있으면, 상기 BMS는 상기 릴레이를 오프 시키고, 오프 될 수 있다. 상기 BMS는, 상기 호스트 시스템에 상기 결합 상태의 이상을 알릴 수 있다.
[15]
발명의 다른 특징에 따른 차량은, 배터리 팩으로부터 전력을 공급받는 부하, 및 상기 배터리 팩으로부터 결합 상태의 이상을 수신하면, 차량의 운행을 정지하는 차량 제어부를 포함한다. 상기 배터리 팩은, 배터리 단자와 상기 부하 사이에 연결되어 있는 릴레이, 직렬 연결되어 있는 복수의 셀을 포함하고, 배터리 감지 정보를 생성하는 적어도 두 개의 배터리 모듈, 및 상기 배터리 팩과 상기 부하 사이에 소정치 이상의 전류가 흐를 때, 상기 배터리 단자의 전압을 측정하고, 상기 적어도 두 개의 배터리 모듈 각각으로부터 적어도 두 개의 배터리 감지 정보를 수신하며, 상기 배터리 단자 전압 및 상기 적어도 두 개의 배터리 감지 정보에 기초하여 상기 배터리 팩의 결합 상태를 판단하는 BMS를 포함할 수 있다.
[16]
상기 BMS는, 상기 적어도 두 개의 배터리 모듈 중 하나의 복수의 셀 전압을 합한 전압에 기초한 배터리 팩 전압과 상기 배터리 단자 전압 간의 차를 상기 소정치 이상의 전류로 나누어 저항을 산출하고, 상기 저항이 소정의 임계치 이상이면, 상기 적어도 두 개의 배터리 모듈 중 하나와 상기 BMS 사이의 결합 상태에 이상이 있는 것으로 판단할 수 있다.
[17]
상기 적어도 두 개의 배터리 모듈 중 하나는, 상기 적어도 두 개의 배터리 모듈 중 상기 BMS에 인접한 배터리 모듈이고, 상기 저항은, 상기 BMS와 상기 적어도 두 개의 배터리 모듈 중 하나 사이에 연결되어 있는 단자, 버스바, 퓨즈 및 배선의 저항들의 합에 대응할 수 있다.
[18]
상기 BMS는, 상기 적어도 두 개의 배터리 모듈 중 각각의 복수의 셀 전압을 합한 전압에 기초한 적어도 두 개의 배터리 팩 전압 중 가장 높은 전압과 가장 낮은 전압 간의 차를 상기 소정치 이상의 전류로 나누어 저항을 산출하고, 상기 저항이 소정의 임계치 이상이면, 상기 적어도 두 개의 배터리 모듈 간의 결합 상태에 이상이 있는 것으로 판단할 수 있다.
[19]
상기 저항은, 상기 적어도 두 개의 배터리 모듈 각각의 단자, 버스바, 및 퓨즈의 저항들의 합 및 상기 적어도 두 개의 배터리 모듈 간의 배선의 저항의 합에 대응할 수 있다.
[20]
상기 BMS는, 상기 적어도 두 개의 배터리 모듈 각각의 양단의 배터리 모듈 전압이 대응하는 소정의 정상 범위보다 작은 전압이면, 상기 정상 범위보다 작은 전압인 배터리 모듈의 결합 상태에 이상이 있는 것으로 판단할 수 있다.
[21]
상기 정상 범위는, 상기 적어도 두 개의 배터리 모듈 각각에서 바라본 저항 값에 따라 다를 수 있다.
[22]
상기 결합 상태에 이상이 있으면, 상기 BMS는 상기 릴레이를 오프 시키고, 오프 될 수 있다.

발명의 효과

[23]
대 전류 경로 상의 접촉 저항 증가로 인한 고열 발생을 사전에 감지할 수 있고, 호스트 시스템(host system)에 경고 메시지를 전달하여 운행 정지를 유도하여 고열 발생으로 인한2차 사고를 사전에 예방을 할 수 있는 배터리 팩 및 이에 연결된 차량을 제공한다.

도면의 간단한 설명

[24]
도 1은 실시 예에 따른 배터리 팩 및 배터리 팩에 연결된 차량의 일부 구성을 나타낸 도면이다.
[25]
도 2는 도 1에 도시된 배터리 팩과 차량의 부하의 등가 회로를 나타낸 회로도이다.
[26]
도 3은 다른 실시 예에 따른 배터리 팩에 연결된 차량의 일부 구성을 나타낸 도면이다.
[27]
도 4는 도 3에 도시된 배터리 팩과 차량의 부하의 등가 회로를 나타낸 회로도이다.
[28]
도 5는 또 다른 실시 예에 따른 배터리 팩에 연결된 차량의 일부 구성을 나타낸 도면이다.
[29]
도 6는 도 5에 도시된 배터리 팩과 차량의 부하의 등가 회로를 나타낸 회로도이다.

발명의 실시를 위한 형태

[30]
아래에서는 첨부한 도면을 참고로 하여본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
[31]
명세서 전체에서, 어떤부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는경우도 포함한다. 또한어떤 부분이 어떤구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을의미한다.
[32]
도 1은 실시 예에따른 배터리 팩 및 배터리 팩에 연결된 차량의 일부 구성을 나타낸 도면이다.
[33]
도 1에 도시된 바와같이, 배터리 팩(1)은 두 개의 배터리 모듈(100, 200), 및 마스터 모듈(10)을 포함한다. 배터리 모듈(100), 배터리 모듈(200), 및 마스터 모듈(10)은 전기적으로 병렬로 연결되어 있고, 마스터 모듈(10)은 차량(20)에 연결되어 있다.
[34]
차량(20)은 배터리 팩(1)과 결합되는 시스템의 일 예로서, 발명이 이에 한정되는 것은 아니다. 차량(20)은 차량 제어부(Vehicle Control Unit, VCU)(21) 및 부하(22)를 포함한다. 부하(22)는배터리 팩(1)에 전기적으로 연결될 수 있고, 배터리 팩(1)으로부터 전력을 공급받는다. VCU(21)는 차량(20)의 운행을 제어한다.
[35]
배터리 모듈(100)과 배터리 모듈(200) 각각의 (+) 단(102, 202)은 볼트(101, 201)에 의해 배선(504)의 양단 중 대응하는 일단에 결합되어 있고, 배터리 모듈(100)과 배터리 모듈(200) 각각의 (-) 단(110, 210)은 볼트(111, 211)에 의해 배선(505)의 양단 중 대응하는 일단에 결합되어 있다.
[36]
배터리 모듈(100)의 (+) 단(102)과 마스터 모듈(10)의 단자(32)는 볼트(101, 31)에 의해 배선(502)의 양단 중 대응하는 일단에 연결되고, 배터리 모듈(100)의 (-) 단(110)과 마스터 모듈(10)의 단자(38)는 볼트(111, 39)에 의해 배선(503)의 양단 중 대응하는 일단에 연결되어 있다.
[37]
마스터 모듈(10)의 단자(52)와 차량(20)의 단자(56)는 볼트(51, 55)에 의해 배선(500)의 양단 중 대응하는 일단에 연결되어 있고, 마스터 모듈(10)의 단자(42)와 차량(20)의 단자(57)는 볼트(43, 58)에 의해 배선(500)의 양단 중 대응하는 일단에 연결되어 있다.
[38]
배터리 모듈(100)은 직렬 연결된 복수의 셀(120) 및 슬레이브 배터리 관리부(Slave Battery Management Unit, SBM)(130)를 포함한다. SBM(130)은 배터리 모듈(100)에 흐르는 전류, 복수의 셀(120) 각각의 셀 전압, 배터리 모듈(100)의 온도, 배터리 모듈(100)의 양단 전압 등을 감지하여 배터리 감지 정보를 생성할 수 있다. SBM(130)은 배터리 감지 정보를 마스터 모듈(10)에 송신하고, 마스터 모듈(10)로부터 신호를 수신할 수 있으며, 마스터 모듈(10)로부터 수신된 신호에 따라 배터리 감지 정보를 생성할 수 있다.
[39]
예를 들어, SBM(130)이 마스터 모듈(10)로부터 배터리 팩 전압을 감지하라는 지시 신호를 수신하면, SBM(130)은 복수의 셀(120) 각각의 셀 전압을 측정한 후 이를 더하여 배터리 팩 전압을 계산하고, 계산된 배터리 팩 전압을 마스터 모듈(10)에 전송한다.
[40]
배터리 모듈(100)에서, 버스바(105)는 볼트(103)와 볼트(104)에 의해 단자(102)와 복수의 셀(120) 사이에 연결되어 있고, 버스바(106)는 복수의 셀(120)에 연결되어 있는 일단 및 볼트(107)에 의해 퓨즈(109)의 일단에 연결되어 있는 타단을 포함한다. 퓨즈(109)는 볼트(107)와 볼트(108)에 의해 단자(110)과 버스바(106) 사이에 연결되어 있다.
[41]
배터리 모듈(200)은 직렬 연결된 복수의 셀(220) 및 슬레이브 배터리 관리부(Slave Battery Management Unit, SBM)(230)를 포함한다. SBM(230)은 배터리 모듈(200)에 흐르는 전류, 복수의 셀(220) 각각의 셀 전압, 배터리 모듈(200)의 온도, 배터리 모듈(200)의 양단 전압 등을 감지하여 배터리 감지 정보를 생성할 수 있다.
[42]
SBM(230)은 배터리 감지 정보를 마스터 모듈(10)에 송신하고, 마스터 모듈(10)로부터 신호를 수신할 수 있으며, 마스터 모듈(10)로부터 수신된 신호에 따라 배터리 감지 정보를 생성할 수 있다. SBM(230)은 직접적으로 마스터 모듈(10)과 신호를 송수신하거나, SBM(130)을 통해 마스터 모듈(10)과 신호를 송수신할 수 있다.
[43]
예를 들어, SBM(230)이 마스터 모듈(10)로부터 배터리 팩 전압을 감지하라는 지시 신호를 수신하면, SBM(230)은 복수의 셀(220) 각각의 셀 전압을 측정한 후 이를 더하여 배터리 팩 전압을 계산하고, 계산된 배터리 팩 전압을 마스터 모듈(10)에 전송한다.
[44]
배터리 모듈(200)에서, 버스바(205)는 볼트(203)와 볼트(204)에 의해 단자(202)와 복수의 셀(220) 사이에 연결되어 있고, 버스바(206)는 복수의 셀(220)에 연결되어 있는 일단 및 볼트(207)에 의해 퓨즈(209)의 일단에 연결되어 있는 타단을 포함한다. 퓨즈(209)는 볼트(207)와 볼트(208)에 의해 단자(210)과 버스바(206) 사이에 연결되어 있다.
[45]
마스터 모듈(10)에서, 퓨즈(35)는 볼트(33) 및 볼트(34)에 의해 단자(32)와 버스바(36)의 일단 사이에 연결되어 있고, 버스바(36)의 타단은 배터리의 B+ 단자에 연결되어 있다. 마스터 모듈(10)에서, 버스바(40)는 볼트(37) 및 볼트(41)에 의해 단자(38) 및 단자(42) 사이에 연결되어 있고, 버스바(54)의 일단은 볼트(53)에 의해 단자(52)에 연결되어 있고, 버스바(54)의 타단은 P+ 단자에 연결되어 있다.
[46]
릴레이(12)는 B+ 단자와 P+ 단자 사이에 연결되어 있고, 배터리 관리 시스템(Battery Management System, BMS)(11)으로부터 출력되는 릴레이 신호(Re_S)에 따라 스위칭한다. 릴레이(12)가 온 되면, 배터리 팩(1)의 B+ 단자와 차량(20)이 전기적으로 연결된다. BMS(11)는 배터리 팩(1)의 충전 또는 방전을 위해서 릴레이(12)를 온 시키고, 배터리 팩(1)을 보호하기 위해서 릴레이(12)를 오프 시킬 수 있다.
[47]
BMS(11)는 B+ 단자 전압(V_B+)을 측정하고, SBM(130, 230)으로부터 배터리 감지 정보를 수신하며, B+ 단자 전압(V_B+)과 배터리 감지 정보에 기초하여 배터리 팩(1)의 결합 상태를 감지할 수 있다. 결합 상태란, 배터리 팩(1)의 배선, 단자, 퓨즈, 버스바 등의 결합 상태를 의미한다. BMS(11)는 결합 상태의 이상을 감지하면 릴레이(12)를 오프 시키고, BMS(11)도 오프된다. BMS(11)는 결합 상태의 이상을 호스트 시스템인 차량(20)에 알릴 수 있다. 구체적으로, BMS(11)는 차량(20)의 VCU(21)에 이를 알릴 수 있고, VCU(21)는 차량(20)의 운행을 정지시키고 이를 표시할 수 있다.
[48]
도 2를 참조하여 BMS(11)가 결합 상태를 감지하는 방법에 대해서 설명한다.
[49]
도 2는 도 1에 도시된 배터리 팩과 차량의 부하의 등가 회로를 나타낸 회로도이다.
[50]
도 2에서, 저항(R1)은 배선들(500, 501)의 저항들을 합한 저항이고, 저항(R2)은 단자들(42, 52) 및 버스바(54)의 저항들을 합한 저항이며, 저항(R3)은 단자(32, 38), 퓨즈(35), 및 버스바(36)의 저항들을 합한 저항이고, 저항(R4)은 배선들(502, 503)의 저항들을 합한 저항이며, 저항(R5)은 단자(102, 110), 퓨즈(109), 및 버스바들(105, 106)의 저항들을 합한 저항이고, 저항(R6)은배선들(504, 505)의 저항들을 합한 저항이며, 저항(R7)은 단자(202, 210), 퓨즈(209), 및 버스바들(205, 206)의 저항들을 합한 저항이다.
[51]
BMS(11)는 저항(R3) 및 저항(R4)을 산출하기 위해서 배터리 팩 전압 및 B+ 단자 전압(V_B+)간의 차를 이용한다. 예를 들어, 배터리 팩 전압은 배터리 모듈(100) 의 복수의 셀(120) 각각의 셀 전압을 합산한 전압일 수 있다. 그러나 발명이 이에 한정되는 것은 아니고, 배터리 모듈(100)의 복수의 셀 전압들의 합산 전압 및 배터리 모듈(200)의 복수의 셀 전압들의 합산 전압 중에서 높은 전압, 낮은 전압, 또는 두 합산 전압의 평균일 수 있다.
[52]
아울러, 배터리 팩 전압과 배터리 모듈의 양단 전압은 구분된다. 배터리 모듈의 양단 전압은 배터리 모듈에서 (+) 단자와 (-) 단자 간의 전압 차이이다.
[53]
BMS(11)는 배터리 팩(1)에 흐르는 전류가 소정치 이상일 때, 저항(R3) 및 저항(R4)을 산출한다. 이하, 이 전류를 제1 전류라 한다. BMS(11)는 배터리 팩 전압에서 B+ 단자 전압(V_B+)을 빼고, 그 결과를 제1 전류로 나누어 저항(R3) 및 저항(R4)의 합산 저항을 계산한다. 이렇게 산출된 합산 저항이 소정의 제1 임계치 이상이면, BMS(11)는 저항(R3) 및 저항(R4)에 해당하는 배선, 버스바, 및 단자 간의 결합 상태에 이상이 있는 것으로 판단한다.
[54]
또한, BMS(11)는 저항들(R5-R7)을 대표하는 블록(block) 저항을 산출하기 위해서 배터리 팩 전압 중 가장 높은 전압과 가장 낮은 전압 간의 차를 이용한다. BMS(11)는 배터리 팩(1)에 흐르는 전류가 소정치 이상일 때, 저항들(R5-R7)을 대표하는 블록 저항을 산출한다. 이하, 제2 전류라 한다.
[55]
예를 들어, BMS(11)는 두 배터리 모듈(100, 200) 각각의 배터리 팩 전압 중 높은 전압에서 낮은 전압을 뺀다. BMS(11)는 두 전압 간의 차를 제2 전류로 나누어 블록 저항을 계산하고, 이렇게 산출된 블록 저항이 소정의 제2 임계치 이상이면, 저항들(R5-R7)에 해당하는 배선, 버스바, 및 단자 간의 결합 상태에 이상이 있는 것으로 판단한다.
[56]
도 1에서는 두 개의 배터리 모듈을 포함하는 배터리 팩이 도시되어 있으나, 발명이 이에 한정되는 것은 아니다.
[57]
도 3은 다른 실시 예에 따른 배터리 팩에 연결된 차량의 일부 구성을 나타낸 도면이다.
[58]
도 3에 도시된 바와 같이, 배터리 팩(1)은 세 개의 배터리 모듈(100, 200, 300)을 포함한다. 이하, 앞선 실시 예와 중복되는 설명은 이하 생략한다.
[59]
배터리 모듈(200)과 배터리 모듈(300) 각각의 (+) 단(202, 302)은 볼트(201, 301)에 의해 배선(506)의 양단 중 대응하는 일단에 결합되어 있고, 배터리 모듈(200)과 배터리 모듈(300) 각각의 (-) 단(210, 310)은 볼트(211, 311)에 의해 배선(507)의 양단 중 대응하는 일단에 결합되어 있다.
[60]
배터리 모듈(300)은 직렬 연결된 복수의 셀(320) 및 슬레이브 배터리 관리부(Slave Battery Management Unit, SBM)(330)를 포함한다. SBM(330)은 배터리 모듈(300)에 흐르는 전류, 복수의 셀(320) 각각의 셀 전압, 배터리 모듈(300)의 온도, 배터리 모듈(300)의 양단 전압 등을 감지하여 배터리 감지 정보를 생성할 수 있다. SBM(330)은 배터리 감지 정보를 마스터 모듈(10)에 송신하고, 마스터 모듈(10)로부터 신호를 수신할 수 있으며, 마스터 모듈(10)로부터 수신된 신호에 따라 배터리 감지 정보를 생성할 수 있다.
[61]
예를 들어, SBM(330)이 마스터 모듈(10)로부터 배터리 팩 전압을 감지하라는 지시 신호를 수신하면, SBM(330)은 복수의 셀(320) 각각의 셀 전압을 측정한 후 이를 더하여 배터리 팩 전압을 계산하고, 계산된 배터리 팩 전압을 마스터 모듈(10)에 전송한다.
[62]
SBM(330)은 직접적으로 마스터 모듈(10)과 신호를 송수신하거나, 두 개의 SBM(130, 230) 중 적어도 하나를 통해 마스터 모듈(10)과 신호를 송수신할 수 있다.
[63]
도 4는 도 3에 도시된 배터리 팩과 차량의 부하의 등가 회로를 나타낸 회로도이다.
[64]
도 4에서, 저항(R1) 내지 저항(R7)에 대한 설명은 중복되므로 생략한다. 저항(R8)은 배선들(506, 507)의 저항들을 합한 저항이고, 저항(R9)은 단자(302, 310), 퓨즈(309), 및 버스바들(305, 306)의 저항들을 합한 저항이다.
[65]
BMS(11)가 저항(R3) 및 저항(R4)을 합한 합산 저항을 산출하는 방식은 앞서 설명과 동일하므로 생략한다.
[66]
BMS(11)는 저항들(R5-R9)을 대표하는 블록(block) 저항을 산출하기 위해서 배터리 팩 전압 중 가장 높은 전압과 가장 낮은 전압 간의 차를 이용한다. BMS(11)는 배터리 팩(1)에 흐르는 전류가 소정치 이상일 때, 저항들(R5-R9)을 대표하는 블록 저항을 산출한다. 이하, 이를 제3 전류라 한다.
[67]
예를 들어, BMS(11)는 세 개의 배터리 모듈(100, 200, 300) 각각의 배터리 팩 전압 중 가장 높은 전압에서 가장 낮은 전압을 뺀다. BMS(11)는 두 전압 간의 차를 제3 전류로 나누어 블록 저항을 계산하고, 이렇게 산출된 블록 저항이 소정의 제3 임계치 이상이면, 저항들(R5-R9)에 해당하는 배선, 버스바, 퓨즈 및 단자 간의 결합 상태에 이상이 있는 것으로 판단한다. 제2 임계치가 제3 임계치보다 높은 값일 수 있다.
[68]
또한, 다른 실시 예에서는, BMS(11)가 저항(R5), 저항(R6)과저항(R7), 및 저항(R8)과 저항(R9) 각각으로 나타내어지는 배선, 단자, 및 버스바의 결합 상태를 판단할 수 있다.
[69]
도 4에 도시된 등가 회로를 기초로 중첩의 원리를 적용하면, 배터리 모듈들(100, 200, 300) 각각에서 바라본 저항이 달라, 배터리 모듈들(100, 200, 300) 각각에 흐르는 전류가 서로 다르다. 이 때, 배터리 모듈들(100, 200, 300) 각각의 전압은 모두 동일한 것으로 가정한다.
[70]
예를 들어, 배터리 모듈(100)에서 바라본 저항(RE1), 배터리 모듈(200)에서 바라본 저항(RE2), 및 배터리 모듈(300)에서 바라본 저항(RE3) 각각은 서로 다르고, RE3>RE2>RE1 이다. 따라서 배터리 모듈(100)에 흐르는 전류(IB1), 배터리 모듈(200)에 흐르는 전류(IB2), 및 배터리 모듈(300)에 흐르는 전류(IB3) 각각은 서로 다르고, IB1>IB2>IB3 이다.
[71]
배터리 모듈들(100, 200, 300) 각각의 양단 전압에 대한 정상 범위를 추정할 수 있다. 정상 범위란 배터리 모듈들(100, 200, 300) 각각이 인접한 다른 구성과의 결합 상태에 이상이 없을 때의 배터리 모듈 양단 전압을 의미한다.
[72]
예를 들어, 배터리 모듈들(100, 200, 300) 각각에서 바라본 저항 값이 작을수록, 흐르는 전류가 증가하여, 배터리 모듈들(100, 200, 300) 각각의 양단 전압이 높을 수 있다. 따라서, 배터리 모듈들(100, 200, 300) 각각에서 바라본 저항 값이 작을수록, 대응하는 정상 범위가 높을 수 있다.
[73]
그러나, 결합 상태에 문제가 있을 경우, 배터리 모듈의 양단 전압이 정상 범위보다 낮은 전압일 수 있다. 예를 들어, 배선, 단자, 버스바, 퓨즈 등 간의 결합에 이상이 발생하면, 해당 구성의 저항이 증가한다. 그러면, 저항이 증가한 지점을 통해 연결되는 배터리 모듈에 흐르는 전류가 감소한다. 따라서 배터리 모듈의 양단 전압이 감소한다.
[74]
다른 실시 예에 따른BMS(11)는 세 개의 배터리 모듈(100, 200, 300) 각각의 SBM(130, 230, 330)으로부터 배터리 모듈의 양단 전압에 대한 정보를 수신하고, 각 배터리 모듈의 정상 범위와 비교하여 정상 범위보다 낮은 전압인 배터리 모듈을 검출한다. 그리고, BMS(11)는 정상 범위에 속하지 않는 배터리 모듈의 결합 상태가 이상이 있는 것으로 판단할 수 있다.
[75]
예를 들어, 배터리 모듈(300)의 양단 전압이 정상 범위보다 낮고, 배터리 모듈(200)의 양단 전압이 정상 범위 내라면, BMS(11)는 저항(R8)과 저항(R9)을 합한 저항이 정상 상태에 비해 높은 값으로 판단한다. 그러면, 배선(506, 507), 단자(302, 310), 버스바(305, 306), 및 퓨즈(309) 간의 결합 상태에 이상이 있는 것으로 판단될 수 있다.
[76]
BMS(11)는 저항들(R5-R9)을 대표하는 블록 저항이 제3 임계치 이상인 경우, 배터리 모듈들(100, 200, 300) 각각의 양단 전압을 대응하는 정상 범위와 비교하여 결합 상태가 이상인 지점을 검출할 수 있다.
[77]
도 3에서는 세 개의 배터리 모듈을 포함하는 배터리 팩이 도시되어 있으나, 발명이 이에 한정되는 것은 아니다.
[78]
도 5는 또 다른 실시 예에 따른 배터리 팩에 연결된 차량의 일부 구성을 나타낸 도면이다.
[79]
도 5에 도시된 바와 같이, 배터리 팩(1)은 네 개의 배터리 모듈(100, 200, 300, 400)을 포함한다. 이하, 앞선 실시 예들과 중복되는 설명은 이하 생략한다.
[80]
배터리 모듈(300)과 배터리 모듈(400) 각각의 (+) 단(302, 402)은 볼트(301, 401)에 의해 배선(508)의 양단 중 대응하는 일단에 결합되어 있고, 배터리 모듈(300)과 배터리 모듈(400) 각각의 (-) 단(210, 310)은 볼트(311, 411)에 의해 배선(509)의 양단 중 대응하는 일단에 결합되어 있다.
[81]
배터리 모듈(400)은 직렬 연결된 복수의 셀(420) 및 슬레이브 배터리 관리부(Slave Battery Management Unit, SBM)(430)를 포함한다. SBM(430)은 배터리 모듈(400)에 흐르는 전류, 복수의 셀(420) 각각의 셀 전압, 배터리 모듈(400)의 온도, 배터리 모듈(400)의 양단 전압 등을 감지하여 배터리 감지 정보를 생성할 수 있다. SBM(430)은 배터리 감지 정보를 마스터 모듈(10)에 송신하고, 마스터 모듈(10)로부터 신호를 수신할 수 있으며, 마스터 모듈(10)로부터 수신된 신호에 따라 배터리 감지 정보를 생성할 수 있다.
[82]
예를 들어, SBM(430)이 마스터 모듈(10)로부터 배터리 팩 전압을 감지하라는 지시 신호를 수신하면, SBM(430)은 복수의 셀(320) 각각의 셀 전압을 측정한 후 이를 더하여 배터리 팩 전압을 계산하고, 계산된 배터리 팩 전압을 마스터 모듈(10)에 전송한다.
[83]
SBM(430)은 직접적으로 마스터 모듈(10)과 신호를 송수신하거나, 세 개의 SBM(130, 230, 330) 중 적어도 하나를 통해 마스터 모듈(10)과 신호를 송수신할 수 있다.
[84]
도 6은 도 5에 도시된 배터리 팩과 차량의 부하의 등가 회로를 나타낸 회로도이다.
[85]
도 6에서, 저항(R1) 내지 저항(R9)에 대한 설명은 중복되므로 생략한다. 저항(R10)은 배선들(508, 509)의 저항들을 합한 저항이고, 저항(R11)은 단자(402, 410), 퓨즈(409), 및 버스바들(405, 406)의 저항들을 합한 저항이다.
[86]
BMS(11)가 저항(R3) 및 저항(R4)을 합한 합산 저항을 산출하는 방식은 앞서 설명과 동일하므로 생략한다.
[87]
BMS(11)는 저항들(R5-R11)을 대표하는 블록(block) 저항을 산출하기 위해서 배터리 팩 전압 중 가장 높은 전압과 가장 낮은 전압 간의 차를 이용한다. BMS(11)는 배터리 팩(1)에 흐르는 전류가 소정치 이상일 때, 저항들(R5-R11)을 대표하는 블록 저항을 산출한다. 이하, 이를 제4 전류라 한다.
[88]
예를 들어, BMS(11)는 네 개의 배터리 모듈(100, 200, 300, 400) 각각의 배터리 팩 전압 중 가장 높은 전압에서 가장 낮은 전압을 뺀다. BMS(11)는두 전압 간의 차를 제4 전류로 나누어 블록 저항을 계산하고, 이렇게 산출된 블록 저항이 소정의 제4 임계치 이상이면, 저항들(R5-R11)에 해당하는 배선, 버스바, 단자, 및 퓨즈 간의 결합 상태에 이상이 있는 것으로 판단한다. 제3 임계치가 제4 임계치보다 높은 값일 수 있다.
[89]
또한, 또 다른 실시 예에서도, 다른 실시 예와 동일한 원리로 BMS(11)가 저항(R5), 저항(R6)과 저항(R7), 저항(R8)과 저항(R9), 및 저항(R10)과 저항(R11) 각각으로 나타내어지는 배선, 단자, 퓨즈, 및 버스바의 결합 상태를 판단할 수 있다.
[90]
앞서 다른 실시 예에서 설명한 동일한 방식으로, BMS(11)는 네 개의 배터리 모듈(100, 200, 300, 400) 각각의 SBM(130, 230, 330, 430)으로부터 배터리 모듈의 양단 전압에 대한 정보를 수신하고, 각 배터리 모듈의 정상 범위와 비교하여 정상 범위보다 낮은 전압인 배터리 모듈을 검출한다. 그리고, BMS(11)는 정상 범위에 속하지 않는 배터리 모듈의 결합 상태가 이상이 있는 것으로 판단할 수 있다.
[91]
예를 들어, 배터리 모듈(400)의 양단 전압이 정상 범위보다 낮고, 배터리 모듈(300)의 양단 전압이 정상 범위 내라면, BMS(11)는 저항(R10) 및 저항(R9)가 정상 상태에 비해 높은 값으로 판단한다. 그러면, 배선(508, 509), 단자(402, 410), 버스바(405, 406), 퓨즈(409) 간의 결합 상태에 이상이 있는 것으로 판단될 수 있다.
[92]
BMS(11)는 저항들(R5-R11)을 대표하는 블록 저항이 제4 임계치 이상인 경우, 배터리 모듈들(100, 200, 300, 400) 각각의 양단 전압을 대응하는 정상 범위와 비교하여 결합 상태가 이상인 지점을 검출할 수 있다.
[93]
실시 예들에 따른 BMS(11)는 배터리 팩(1)에 흐르는 전류가 소정치 이상이면, 결합 상태를 감지하기 위한 동작을 수행한다. 종래에는 차량과 같은 호스트 시스템의 부하의 동작 타이밍과 배터리 팩 전압을 측정하기 위한 타이밍을 동기화하기 위한 별도의 동기 신호가 필요하였다. 그러나 실시 예들에 따르면 별도의 동기 신호가 불필요하고, 동기 신호를 송수신하기 위한 별도의 신호선 역시 불필요하다.
[94]
실시 예들에 따라, 결합 상태가 이상이 있는 체결 지점이 검출될 수 있으므로, 나사의 풀림, 전력선의 노후 등으로 인한 고열 및 발화를 사전에 방지할 수 있다.
[95]
이상에서 복수의 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는본 발명의 기본개념을 이용한 당업자의 여러 변형 및 개량 형태 또한본 발명의 권리범위에 속하는 것이다.

청구범위

[청구항 1]
호스트 시스템에 연결되어 있는 배터리 팩에 있어서, 상기 배터리 팩의 배터리 단자와 상기 호스트 시스템 사이에 연결되어 있는 릴레이, 직렬 연결되어 있는 복수의 셀을 포함하고, 배터리 감지 정보를 생성하는 적어도 두 개의 배터리 모듈, 및 상기 배터리 팩과 상기 호스트 시스템 간의 대전류 경로 상에 소정치 이상의 전류가 흐를 때, 상기 배터리 단자의 전압을 측정하고, 상기 적어도 두 개의 배터리 모듈 각각으로부터 적어도 두 개의 배터리 감지 정보를 수신하며, 상기 배터리 단자 전압 및 상기 적어도 두 개의 배터리 감지 정보에 기초하여 상기 배터리 팩의 결합 상태를 판단하는 BMS를 포함하는 배터리 팩.
[청구항 2]
제1항에 있어서, 상기 BMS는, 상기 적어도 두 개의 배터리 모듈 중 하나의 복수의 셀 전압을 합한 전압에 기초한 배터리 팩 전압과 상기 배터리 단자 전압 간의 차를 상기 소정치 이상의 전류로 나누어 저항을 산출하는 배터리 팩.
[청구항 3]
제2항에 있어서, 상기 적어도 두 개의 배터리 모듈 중 하나는, 상기 적어도 두 개의 배터리 모듈 중 상기 BMS에 인접한 배터리 모듈이고, 상기 저항은, 상기 BMS와 상기 적어도 두 개의 배터리 모듈 중 하나 사이에 연결되어 있는 단자, 버스바, 퓨즈 및 배선의 저항들의 합에 대응하는 배터리 팩.
[청구항 4]
제2항에 있어서, 상기 BMS는, 상기 저항이 소정의 임계치 이상이면, 상기 적어도 두 개의 배터리 모듈 중 하나와 상기 BMS 사이의 결합 상태에 이상이 있는 것으로 판단하는 배터리 팩.
[청구항 5]
제1항에있어서, 상기 BMS는, 상기 적어도 두 개의 배터리 모듈 중 각각의 복수의 셀 전압을 합한 전압에 기초한 적어도 두 개의 배터리 팩 전압 중 가장 높은 전압과 가장 낮은 전압 간의 차를 상기 소정치 이상의 전류로 나누어 저항을 산출하는 배터리 팩.
[청구항 6]
제5항에 있어서, 상기 저항은, 상기 적어도 두 개의 배터리 모듈 각각의 단자, 버스바, 및 퓨즈의 저항들의 합 및 상기 적어도 두 개의 배터리 모듈 간의 배선의 저항의 합에 대응하는 배터리 팩.
[청구항 7]
제5항에 있어서, 상기 BMS는, 상기 저항이 소정의 임계치 이상이면, 상기 적어도 두 개의 배터리 모듈 간의 결합 상태에 이상이 있는 것으로 판단하는 배터리 팩.
[청구항 8]
제1항에 있어서, 상기 BMS는, 상기 적어도 두 개의 배터리 모듈 각각의 양단의 배터리 모듈 전압이 대응하는 소정의 정상 범위보다 작은 전압이면, 상기 정상 범위보다 작은 전압인 배터리 모듈의 결합 상태에 이상이 있는 것으로 판단하는 배터리 팩.
[청구항 9]
제8항에 있어서, 상기 적어도 두 개의 배터리 모듈 각각에서 바라본 저항 각각에 따라 상기 적어도 두 개의 배터리 모듈 각각에 흐르는 전류가 결정되는 배터리 팩.
[청구항 10]
제9항에 있어서, 상기 적어도 두 개의 배터리 모듈 각각에서 바라본 저항 각각에 대해서, 저항 값이 작을수록 대응하는 배터리 모듈에 흐르는 전류가 증가하여 상기 대응하는 배터리 모듈에 대응하는 정상 범위가 높으며, 상기 정상 범위는 상기 적어도 두 개의 배터리 모듈 각각에 대해서, 결합 상태에 이상이 없을 때의 배터리 모듈 양단 전압인 배터리 팩.
[청구항 11]
제10항에 있어서, 상기 BMS는, 상기 대응하는 정상 범위보다 상기 대응하는 배터리 모듈의 양단 전압이 낮으면, 상기 대응하는 배터리 모듈의 결합 상태에 이상이 있는 것으로 판단하는 배터리 팩.
[청구항 12]
제8항에 있어서, 상기 정상 범위는, 상기 적어도 두 개의 배터리 모듈 각각에서 바라본 저항 값에 따라 다른 배터리 팩.
[청구항 13]
제12항에 있어서, 상기 적어도 두 개의 배터리 모듈 각각에서 바라본 저항 값이 작을수록 대응하는 정상 범위가 높은 배터리 팩.
[청구항 14]
제1항에 있어서, 상기 결합 상태에 이상이 있으면, 상기 BMS는 상기 릴레이를 오프 시키고, 오프 되는 배터리 팩.
[청구항 15]
제14항에있어서, 상기 BMS는, 상기 호스트 시스템에 상기 결합 상태의 이상을 알리는 배터리 팩.
[청구항 16]
배터리 팩으로부터 전력을 공급받는 부하, 및 상기 배터리 팩으로부터 결합 상태의 이상을 수신하면, 차량의 운행을 정지하는 차량 제어부를 포함하고, 상기 배터리 팩은, 배터리 단자와 상기 부하 사이에 연결되어 있는 릴레이, 직렬 연결되어 있는 복수의 셀을 포함하고, 배터리 감지 정보를 생성하는 적어도 두 개의 배터리 모듈, 및 상기 배터리 팩과 상기 부하 사이에 소정치 이상의 전류가 흐를 때, 상기 배터리 단자의 전압을 측정하고, 상기 적어도 두 개의 배터리 모듈 각각으로부터 적어도 두 개의 배터리 감지 정보를 수신하며, 상기 배터리 단자 전압 및 상기 적어도 두 개의 배터리 감지 정보에 기초하여 상기 배터리 팩의 결합 상태를 판단하는 BMS를 포함하는 차량.
[청구항 17]
제16항에 있어서, 상기 BMS는, 상기 적어도 두 개의 배터리 모듈 중 하나의 복수의 셀 전압을 합한 전압에 기초한 배터리 팩 전압과 상기 배터리 단자 전압 간의 차를 상기 소정치 이상의 전류로 나누어 저항을 산출하고, 상기 저항이 소정의 임계치 이상이면, 상기 적어도 두 개의 배터리 모듈 중 하나와 상기 BMS 사이의 결합 상태에 이상이 있는 것으로 판단하는 차량.
[청구항 18]
제17항에 있어서, 상기 적어도 두 개의 배터리 모듈 중 하나는, 상기 적어도 두 개의 배터리 모듈 중 상기 BMS에 인접한 배터리 모듈이고, 상기 저항은, 상기 BMS와 상기 적어도 두 개의 배터리 모듈 중 하나 사이에 연결되어 있는 단자, 버스바, 퓨즈 및 배선의 저항들의 합에 대응하는 차량.
[청구항 19]
제16항에 있어서, 상기 BMS는, 상기 적어도 두 개의 배터리 모듈 중 각각의 복수의 셀 전압을 합한 전압에 기초한 적어도 두 개의 배터리 팩 전압 중 가장 높은 전압과 가장 낮은 전압 간의 차를 상기 소정치 이상의 전류로 나누어 저항을 산출하고, 상기 저항이 소정의 임계치 이상이면, 상기 적어도 두 개의 배터리 모듈 간의 결합 상태에 이상이 있는 것으로 판단하는 차량.
[청구항 20]
제19항에 있어서, 상기 저항은, 상기 적어도 두 개의 배터리 모듈 각각의 단자, 버스바, 및 퓨즈의 저항들의 합 및 상기 적어도 두 개의 배터리 모듈 간의 배선의 저항의 합에 대응하는 차량.
[청구항 21]
제16항에 있어서, 상기 BMS는, 상기 적어도 두 개의 배터리 모듈 각각의 양단의 배터리 모듈 전압이 대응하는 소정의 정상 범위보다 작은 전압이면, 상기 정상 범위보다 작은 전압인 배터리 모듈의 결합 상태에 이상이 있는 것으로 판단하는 차량.
[청구항 22]
제21항에 있어서, 상기 정상 범위는, 상기 적어도 두 개의 배터리 모듈 각각에서 바라본 저항 값에 따라 다른 차량.
[청구항 23]
제16항에 있어서, 상기 결합 상태에 이상이 있으면, 상기 BMS는 상기 릴레이를 오프 시키고, 오프 되는 차량.

도면

[도1]

[도2]

[도3]

[도4]

[도5]

[도6]