WIPO logo
Mobile | Deutsch | Español | Français | 日本語 | 한국어 | Português | Русский | 中文 | العربية |
PATENTSCOPE

Search International and National Patent Collections
World Intellectual Property Organization
Options
Query Language
Stem
Sort by:
List Length
Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2018048598) DEEP MACHINE LEARNING TO PERFORM TOUCH MOTION PREDICTION
Latest bibliographic data on file with the International Bureau    Submit observation

Pub. No.: WO/2018/048598 International Application No.: PCT/US2017/047300
Publication Date: 15.03.2018 International Filing Date: 17.08.2017
Chapter 2 Demand Filed: 14.02.2018
IPC:
G06N 3/04 (2006.01) ,G06N 3/08 (2006.01) ,G06F 3/0488 (2013.01)
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
N
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3
Computer systems based on biological models
02
using neural network models
04
Architecture, e.g. interconnection topology
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
N
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3
Computer systems based on biological models
02
using neural network models
08
Learning methods
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
F
ELECTRIC DIGITAL DATA PROCESSING
3
Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
01
Input arrangements or combined input and output arrangements for interaction between user and computer
048
Interaction techniques based on graphical user interfaces [GUIs]
0487
using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
0488
using a touch-screen or digitiser, e.g. input of commands through traced gestures
Applicants: GOOGLE LLC[US/US]; 1600 Amphitheatre Parkway Mountain View, California 94043, US
Inventors: LIN, Pin-Chih; US
LIN, Tai-Hsu; US
Agent: PROBST, Joseph J.; US
BATAVIA, Neil, M.; US
KENNEDY, Richard; GB
Priority Data:
15/259,91708.09.2016US
Title (EN) DEEP MACHINE LEARNING TO PERFORM TOUCH MOTION PREDICTION
(FR) APPRENTISSAGE AUTOMATIQUE PROFOND POUR METTRE EN OEUVRE UNE PRÉDICTION DE MOUVEMENT TACTILE
Abstract:
(EN) The present disclosure provides systems and methods that leverage machine learning to perform user input motion prediction. In particular, the systems and methods of the present disclosure can include and use a machine-learned motion prediction model that is trained to receive motion data indicative of motion of a user input object and, in response to receipt of the motion data, output predicted future locations of the user input object. The user input object can be a finger of a user or a stylus operated by the user. The motion prediction model can include a deep recurrent neural network.
(FR) La présente invention concerne des systèmes et des procédés qui tirent profit d'un apprentissage automatique pour mettre en oeuvre une prédiction de mouvement d'entrée d'utilisateur. En particulier, les systèmes et les procédés de la présente invention peuvent comprendre et utiliser un modèle de prédiction de mouvement appris automatiquement, qui est entraîné pour recevoir des données de mouvement indicatrices du mouvement d'un objet d'entrée d'utilisateur et, en réponse à la réception des données de mouvement, sortir des positions futures prédites de l'objet d'entrée d'utilisateur. L'objet d'entrée d'utilisateur peut être un doigt d'un utilisateur ou un stylet actionné par l'utilisateur. Le modèle de prédiction de mouvement peut comprendre un réseau neuronal récurrent profond.
front page image
Designated States: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
African Regional Intellectual Property Organization (ARIPO) (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW)
Eurasian Patent Office (AM, AZ, BY, KG, KZ, RU, TJ, TM)
European Patent Office (EPO) (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)
Publication Language: English (EN)
Filing Language: English (EN)