Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2018037545) AIR CONDITIONING DEVICE, AIR CONDITIONING METHOD, AND PROGRAM
Document

明 細 書

発明の名称 空気調和装置、空気調和方法及びプログラム

技術分野

0001  

背景技術

0002   0003   0004  

先行技術文献

特許文献

0005  

発明の概要

発明が解決しようとする課題

0006   0007  

課題を解決するための手段

0008  

発明の効果

0009  

図面の簡単な説明

0010  

発明を実施するための形態

0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109  

産業上の利用可能性

0110  

符号の説明

0111  

請求の範囲

1   2   3   4   5   6   7   8   9   10  

図面

1   2   3   4   5   6   7   8   9   10  

明 細 書

発明の名称 : 空気調和装置、空気調和方法及びプログラム

技術分野

[0001]
 本発明は、空気調和装置、空気調和方法及びプログラムに関する。

背景技術

[0002]
 冷房運転を行う空調装置は、通常、圧縮機、室外の熱交換器、減圧器、及び室内の熱交換器に冷媒を循環させて、室内と室外との間で熱交換を行う。室外の熱交換器は、凝縮器として機能して放熱し、室内の熱交換器は、蒸発器として機能して吸熱する。
[0003]
 上述の冷房運転に加えて、いわゆる再熱除湿を行う空調装置が知られている(例えば、特許文献1を参照)。再熱除湿は、空気を露点温度以下に冷却して除湿することと、空気を加熱することを同時に実行する運転を意味する。
[0004]
 特許文献1に記載の空気調和機には、室内の熱交換器として、第1熱交換器及び第2熱交換器が設けられ、第1熱交換器と第2熱交換器との間に電子膨張弁が設けられる。そして、この空気調和機は、電子膨張弁の絞りを制御して、第1熱交換器を再熱器として放熱させるとともに、第2熱交換器を蒸発器として吸熱させることにより、再熱除湿を行う。

先行技術文献

特許文献

[0005]
特許文献1 : 特開平5-18630号公報

発明の概要

発明が解決しようとする課題

[0006]
 特許文献1に記載の空気調和機が冷房運転をしているときに、第1熱交換器の冷媒温度は、空調対象空間の室温よりある程度低い温度に保たれる。これにより、第1熱交換器は空気を冷却することとなる。一方、この空気調和機が再熱除湿をしているときに、第1熱交換器の冷媒温度は、室温よりある程度高い温度に保たれる。このため、空気調和機が冷房運転から再熱除湿に運転を切り替えると、第1熱交換器の冷媒温度が不連続的に高くなる。したがって、空気調和機が顕熱負荷を処理する能力も不連続的に変動し、ユーザの快適性を損なうおそれがある。
[0007]
 本発明は、上記の事情に鑑みてなされたもので、ユーザの快適性を向上させることを目的とする。

課題を解決するための手段

[0008]
 上記目的を達成するため、本発明の空気調和装置は、第1冷房モード、第2冷房モード及び除湿モードから選択した運転モードで稼働する空気調和装置であって、圧縮機、室外熱交換器、開度可変の第1膨張弁、第1室内熱交換器、開度可変の第2膨張弁、及び第2室内熱交換器をこの順に通して冷媒を循環させる冷媒回路と、空調対象となる室内空間における空気の温度を示す温度情報を取得する取得手段と、第1室内熱交換器と第2室内熱交換器とによって熱交換された空気を室内空間に送風する室内送風手段と、を備え、第1冷房モードでは、第1膨張弁と第2膨張弁との開度が予め定められた開度となることで、第1室内熱交換器の冷媒蒸発温度が第2室内熱交換器の冷媒蒸発温度に等しくなり、第2冷房モードでは、第1膨張弁の開度が第1冷房モードにおける開度以上となり第2膨張弁の開度が第1冷房モードにおける開度以下となることで、第1室内熱交換器の冷媒蒸発温度が、第2室内熱交換器の冷媒蒸発温度より高く、温度情報により示される温度より低くなり、除湿モードでは、第1膨張弁の開度が第2冷房モードにおける開度以上となり第2膨張弁の開度が第2冷房モードにおける開度以下となることで、第1室内熱交換器の冷媒蒸発温度が温度情報により示される温度より高くなる。

発明の効果

[0009]
 本発明によれば、第1室内熱交換器の冷媒温度が、第2室内熱交換器の冷媒温度より高く、室温より低い第2冷房モードで空気調和装置が稼働する。これにより、第1冷房モードと除湿モードとの間で空気調和装置の能力を連続的に調整することが可能となり、ユーザの快適性を向上させることができる。

図面の簡単な説明

[0010]
[図1] 実施の形態1に係る空気調和装置の構成を示す図
[図2] 顕熱負荷と膨張弁の開度との関係を示す図
[図3] 顕熱負荷と冷媒蒸発温度との関係を示す図
[図4] 空気調和処理を示すフロー図
[図5] 外気温、室温及び膨張弁の開度の推移の例を示す図
[図6] 実施の形態1に係る顕熱能力と潜熱能力との関係を示す図
[図7] 実施の形態2に係る外気温、室温及び室外送風機の風量の推移の例を示す図
[図8] 実施の形態3に係る空気調和装置の構成を示す図
[図9] 実施の形態4に係る空気調和装置の構成を示す図
[図10] 実施の形態5に係る顕熱能力と潜熱能力との関係を示す図

発明を実施するための形態

[0011]
 以下、本発明の実施の形態を、図面を参照しつつ詳細に説明する。
[0012]
 実施の形態1.
 図1には、実施の形態1に係る空気調和装置100の構成が示されている。空気調和装置100は、蒸気圧縮式ヒートポンプにより空調対象となる室内空間内の空気を調和するルームエアコンディショナである。室内空間は、住宅、オフィス又は工場等の建物内の特定の部屋である。空気調和装置100は、室内空間の室温を設定温度まで低下させる冷房運転、いわゆる再熱除湿を実行して室内空間の湿度を低下させる除湿運転、及び、室内空間の室温を設定温度まで上昇させる暖房運転を実行し、これらの運転により室内空間における空気が調和される。そして、空気調和装置100は、冷房運転と除湿運転とを切り替える際に、空調空気の温度を滑らかに変化させることで、室内空間に在室するユーザの快適性を高めている。
[0013]
 空気調和装置100は、図1に示されるように、冷媒配管101で接続された室外機110と室内機120とを有している。なお、図1において、冷媒配管101は、太い実線で示されている。
[0014]
 冷媒配管101は、室外機110と室内機120との間で冷媒を環流させるための銅管と、銅管の腐食及び冷媒の吸放熱を防止する保護部材と、を含んで構成される。冷媒配管101には、チューブ及びパイプが含まれる。冷媒は、例えば、HFC(Hydro Fluoro Carbons)冷媒であるR410A又はR32である。ただし、冷媒配管の材質及び冷媒の種類はこれに限られず、任意である。
[0015]
 室外機110は、室内空間を内部に有する建物の壁面又は屋上等の室外に設置される。室外機110は、冷媒を圧縮する圧縮機111と、冷媒の流路を切り替える四方弁112と、外気と冷媒との間で熱交換を行う室外熱交換器113と、室外熱交換器113に空気を送風する室外送風機114と、開度可変の第1膨張弁115と、を有している。圧縮機111、四方弁112、室外熱交換器113及び第1膨張弁115は、冷媒配管101で接続される。
[0016]
 圧縮機111は、例えば、スクロール圧縮機、ロータリー圧縮機、その他の方式で冷媒を圧縮する装置である。圧縮機111は、四方弁112から冷媒配管101を介して吸入口に流入した冷媒蒸気を圧縮して、高温高圧の冷媒蒸気を吐出口から吐出する。圧縮機111が吐出した冷媒蒸気は、冷媒配管101を介して四方弁112に送出される。圧縮機111は、室内機120の制御部129から送信される制御信号に従って稼働し、圧縮機111の動作周波数は、この制御信号により指定される。
[0017]
 四方弁112は、冷媒配管101を介して圧縮機111の吸入口及び吐出口に接続されている。また、四方弁112は、冷媒配管101を介して、室外熱交換器113及び室内機120の第2室内熱交換器122に接続されている。四方弁112は、制御部129から送信される制御信号に従って冷媒の流路を切り替える。すなわち、四方弁112は、圧縮機111の吐出口から送出された冷媒を、室外熱交換器113又は第2室内熱交換器122に送出する。また、四方弁112は、室外熱交換器113又は第2室内熱交換器122から送出された冷媒を、圧縮機111の吸入口へ送出する。四方弁112が流路を切り替えることにより、冷房運転及び除湿運転用の冷媒回路102と、暖房運転用の冷媒回路102と、のいずれか一方が形成される。冷媒回路102の詳細については後述する。
[0018]
 室外熱交換器113は、四方弁112及び第1膨張弁115に冷媒配管101を介して接続され、四方弁112及び第1膨張弁115の一方から流入した冷媒を他方に送出する。室外熱交換器113は、外気と冷媒との間で熱交換を行うことにより、流入した冷媒を凝縮又は蒸発させ、液化した冷媒又は冷媒蒸気を吐出する。例えば、冷房運転又は除湿運転時には、室外熱交換器113が凝縮器として機能することにより冷媒が放熱する。また、暖房運転時には、室外熱交換器113が蒸発器として機能することにより冷媒が吸熱する。
[0019]
 室外送風機114は、ファンと当該ファンを回転させる電動モータとを含んで構成され、室外熱交換器113の近傍に配置される。室外送風機114は、制御部129から送信される制御信号に従ってファンを回転させることにより、室外機110の外部から流入して室外熱交換器113を通過する空気流を生成する。室外熱交換器113によって熱交換された空気は、加熱又は冷却されて室外機110の外部に排出される。室外送風機114の風量は、制御部129からの制御信号により指定される。
[0020]
 第1膨張弁115は、内蔵のパルスモータにより開度を連続的に変更可能な減圧器である。第1膨張弁115は、室外熱交換器113及び室内機120の第1室内熱交換器121に冷媒配管101を介して接続され、室外熱交換器113及び第1室内熱交換器121の一方から流入した冷媒を他方に送出する。第1膨張弁115は、流入した冷媒にかかる圧力を減圧して冷媒を膨張させ、流入した冷媒より低温低圧の冷媒を吐出する。第1膨張弁115から吐出される冷媒の温度及び圧力は、第1膨張弁115の開度に応じて変化する。ただし、第1膨張弁115の開度が全開であれば、冷媒は減圧されずにほぼ膨張することなく第1膨張弁115を通過する。第1膨張弁115の開度は、制御部129から送信される制御信号のパルス数により指定される。なお、開度は、絞り量に対応し、全開の開度は、絞り量がゼロの状態に相当する。
[0021]
 室内機120は、例えば室内空間の壁又は天井等に設置されて、冷風又は温風を吹き出すことにより室内空間の空気を調和する。室内機120は、室内空間の空気と冷媒との間で熱交換を行う第1室内熱交換器121及び第2室内熱交換器122と、第1室内熱交換器121と第2室内熱交換器122との間の冷媒配管101に配置される開度可変の第2膨張弁123と、第1室内熱交換器121及び第2室内熱交換器122により熱交換された空気を室内空間に送風する室内送風機124と、第1室内熱交換器121の冷媒蒸発温度を計測するセンサ121aと、第2室内熱交換器122の冷媒蒸発温度を計測するセンサ122aと、室内空間における空気の温度を計測するセンサ125aと、室内空間における空気の湿度を計測するセンサ126aと、赤外線を受光するセンサ127aと、各センサから計測結果を示す情報を取得する取得部128と、空気調和装置100の各構成要素を制御する制御部129と、を有している。第1室内熱交換器121、第2膨張弁123、及び第2室内熱交換器122は、冷媒配管101でこの順に接続される。なお、図1において、取得部128に接続される破線、及び制御部129に接続される破線は、信号線を示している。
[0022]
 第1室内熱交換器121は、第1膨張弁115及び第2膨張弁123に冷媒配管101を介して接続され、第1膨張弁115及び第2膨張弁123の一方から流入した冷媒を他方に送出する。また、第2室内熱交換器122は、第2膨張弁123及び四方弁112に冷媒配管101を介して接続され、第2膨張弁123及び四方弁112の一方から流入した冷媒を他方に送出する。
[0023]
 第1室内熱交換器121及び第2室内熱交換器122は、室内空間の空気と冷媒との間で熱交換を行うことにより、流入した冷媒を蒸発又は凝縮させ、冷媒蒸気、液化した冷媒又は二相冷媒を吐出する。二相冷媒は、冷媒蒸気と液化した冷媒とが混在した冷媒を意味する。例えば、冷房運転時には、第1室内熱交換器121及び第2室内熱交換器122が蒸発器として機能することにより冷媒が吸熱し、室内空間の空気が冷却される。また、暖房運転時には、第1室内熱交換器121及び第2室内熱交換器122が凝縮器として機能することにより冷媒が放熱し、室内空間の空気が加熱される。ただし、除湿運転時には、第1室内熱交換器121が凝縮器として機能することにより空気が加熱されるとともに、第2室内熱交換器122が蒸発器として機能することにより空気が露点温度以下に冷却されて除湿される。
[0024]
 第2膨張弁123は、第1膨張弁115と同等の構成を有する減圧器である。ただし、第2膨張弁123を構成する部材の大きさ、形状及び材質は、第1膨張弁115と異なっていてもよい。第2膨張弁123は、第1室内熱交換器121及び第2室内熱交換器122に冷媒配管101を介して接続され、第1室内熱交換器121及び第2室内熱交換器122の一方から流入した冷媒を減圧して他方に送出する。第1膨張弁115の開度は、制御部129から送信される制御信号により指定される。
[0025]
 室内送風機124は、室外送風機114と同等の構成を有し、第1室内熱交換器121及び第2室内熱交換器122の近傍に配置される。ただし、室内送風機124のファンは、例えば、クロスフローファン又はプロペラファンである。室内送風機124は、制御部129から送信される制御信号に従ってファンを回転させることにより、室内空間から室内機120の内部に流入して第1室内熱交換器121及び第2室内熱交換器122を通過する空気流を生成する。第1室内熱交換器121及び第2室内熱交換器122によって熱交換された空気は、冷却又は加熱されて室内機120の吹き出し口から室内空間に送風される。室内送風機124の風向及び風量は、制御部129からの制御信号により指定される。
[0026]
 なお、図1では、便宜上、室内送風機124として1つの回転軸を有するファン及びモータが示されているが、これには限られない。室内送風機124は、第1室内熱交換器121に送風するためのファン及びモータと、第2室内熱交換器122に送風するためのファン及びモータをそれぞれ有していてもよい。また、図1では、第1室内熱交換器121を通過する空気流と第2室内熱交換器122を通過する空気流がそれぞれ生成される状態が示されているが、これには限られない。室内送風機124は、第1室内熱交換器121と第2室内熱交換器122の双方を、この順で又は逆順に通過する空気流を生成してもよい。
[0027]
 センサ121aは、第1室内熱交換器121の中央部分に配置される。センサ121aは、第1室内熱交換器121を構成する配管の温度を、第1室内熱交換器121における冷媒蒸発温度として計測し、計測結果を示す温度情報を取得部128へ送信する。なお、センサ121aは、第1室内熱交換器121の吸入口又は吐出口の近傍における冷媒配管101の温度を、第1室内熱交換器121の冷媒蒸発温度として計測してもよい。
[0028]
 センサ122aは、第2室内熱交換器122の中央部分に配置される。センサ122aは、第2室内熱交換器122を構成する配管の温度を、第2室内熱交換器122における冷媒蒸発温度として計測し、計測結果を示す温度情報を取得部128へ送信する。なお、センサ122aは、第1室内熱交換器122の吸入口又は吐出口の近傍における冷媒配管101の温度を、第2室内熱交換器121の冷媒蒸発温度として計測してもよい。
[0029]
 なお、センサ121a,122aは、実際の冷媒蒸発温度を直接的に計測することが望ましいが、これには限定されない。センサ121a,122aによって計測される温度は、制御部129が計測結果から冷媒蒸発温度をある程度推定できるものであればよい。
[0030]
 センサ125a,126aは、室内機120の空気の吸込み口の近傍に配置される。センサ125a,126aはそれぞれ、室内機120に吸い込まれた空気の温度及び湿度を、室内空間における空気の温度及び湿度として計測し、計測結果を示す温度情報及び湿度情報を取得部128へ送信する。
[0031]
 センサ127aは、サーモパイルやボロメータのような赤外線を検出する素子で構成される。センサ127aは、室内空間の温度分布を計測するために用いられる。
[0032]
 取得部128は、各センサから計測結果等の情報を取得するためのインタフェース回路を含んで構成される。取得部128は、センサ121a,122aから第1室内熱交換器121及び第2室内熱交換器122の冷媒蒸発温度を示す温度情報を取得し、センサ125a,126aから室内空間における空気の温度及び湿度を示す温度情報及び湿度情報を取得し、端末140から送信されたデータを取得する。そして、取得部128は、取得した情報を制御部129に送信する。
[0033]
 制御部129は、マイクロプロセッサ、RAM(Random Access Memory)及びEEPROM(Electrically Erasable Programmable Read-Only Memory)を含んで構成される。制御部129を構成するマイクロプロセッサが、EEPROMに記憶されるプログラムP1を実行することにより、制御部129は、種々の機能を発揮する。すなわち、制御部129は、取得部128から受信した情報に基づいて、圧縮機111の動作周波数、四方弁112の流路、室外送風機114の風量、第1膨張弁115の開度、第2膨張弁123の開度、室内送風機124の風量を適宜制御する。制御部129が空気調和装置100の各構成要素を制御することにより、空気調和装置100の冷房運転、除湿運転及び暖房運転が実行される。
[0034]
 端末140は、ユーザが空気調和装置100を操作するための遠隔操作端末である。端末140は、スマートホン又はウェアラブル端末であってもよい。端末140は、ユーザから入力された運転モード及び設定温度を示すデータを取得して、このデータを示す赤外線又は無線LANに代表される無線信号を空気調和装置100に送信する。
[0035]
 以上の構成を有する空気調和装置100において、冷房運転及び除湿運転が実行される際の冷媒回路102は、図1に示されるように、圧縮機111、四方弁112、室外熱交換器113、第1膨張弁115、第1室内熱交換器121、第2膨張弁123、第2室内熱交換器122及び四方弁112をこの順に通して冷媒を循環させる。図1には、この冷媒回路102において冷媒の流れる方向が実線の矢印で示されている。また、暖房運転が実行される際の冷媒回路102は、圧縮機111、四方弁112、第2室内熱交換器122、第2膨張弁123、第1室内熱交換器121、第1膨張弁115、室外熱交換器113及び四方弁112をこの順に通して冷媒を循環させる。図1には、この冷媒回路102において冷媒の流れる方向が破線の矢印で示されている。
[0036]
 続いて、空気調和装置100の各運転モードについて説明する。本実施の形態に係る運転モードは、第1冷房モード、第2冷房モード、第3冷房モード、除湿モード、及び暖房モードを含む。第1冷房モード、第2冷房モード及び第3冷房モードは、空気調和装置100の冷房運転に相当し、除湿モードは、空気調和装置100の除湿運転に相当し、暖房モードは、空気調和装置100の暖房運転に相当する。空気調和装置100は、これら複数の運転モードから一の運転モードを選択し、選択した運転モードで稼働することにより空調空気を室内空間に送風する。
[0037]
 運転モードは、空気調和装置100が継続して運転する特定の状態を意味する。空気調和装置100は、通常、取得部128によって取得される情報が変化しない限り、一の運転モードに従った運転を継続する。ここで、運転の継続は、少なくとも1分間に渡り運転モードが変化しないことをいう。
[0038]
 本実施の形態では、制御部129が、顕熱負荷に応じて第1膨張弁115及び第2膨張弁123の開度を制御して、予め定められた条件に従って運転モードを変更する。顕熱負荷は、室内空間の温度を設定温度に変更するために必要なエネルギーを意味する。なお、制御部129は、顕熱負荷が大きい室内空間を冷却する必要がある場合に、第1冷房モード、第2冷房モード、第3冷房モード、除湿モードの順に運転モードを変更する。以下では、このように運転モードを変更する場合を中心に説明する。
[0039]
 図2には、顕熱負荷と、制御部129によって制御される第1膨張弁115及び第2膨張弁123の開度との関係が示されている。図2中の線L1は、第1膨張弁の開度を示し、線L2は、第2膨張弁の開度を示す。
[0040]
 図2に示されるように膨張弁の開度が制御される結果、第1室内熱交換器121及び第2室内熱交換器122の冷媒蒸発温度は、顕熱負荷に応じて図3に示されるように推移する。図3中の線L11は、第1室内熱交換器121の冷媒蒸発温度を示し、線L12は、第2室内熱交換器122の冷媒蒸発温度を示す。ここで、第1冷房モード、第2冷房モード、第3冷房モード、及び除湿モードが、冷媒蒸発温度と取得部128によって取得された温度情報により示される現在の室温Trとの関係から以下のように規定される。
[0041]
 第1冷房モードは、第1室内熱交換器121の冷媒蒸発温度が第2室内熱交換器122の冷媒蒸発温度に等しくなる運転モードである。第1冷房モードは、制御部129が、第1膨張弁115及び第2膨張弁123の開度を予め定められた開度にすることで実現される。具体的には、図2に示されるように制御部129が第1膨張弁115の開度を絞り、第2膨張弁123の開度を全開とすることで、第1冷房モードの運転が実行される。第1冷房モードでは、第1膨張弁115から吐出された低温低圧の冷媒が第1室内熱交換器121及び第2室内熱交換器122で蒸発し、室内機120が空気を冷却して室内空間に送風する。
[0042]
 第2冷房モードは、第1室内熱交換器121の冷媒蒸発温度が第2室内熱交換器122の冷媒蒸発温度以上であって室温Tr以下になる運転モードである。第2冷房モードは、制御部129が、図2に示されるように、第1膨張弁115の開度を第1冷房モードにおける開度より開くとともに、第2膨張弁123の開度を第1冷房モードにおける開度より絞ることで実現される。第2冷房モードでは、第1膨張弁115によって減圧された中温中圧の冷媒が、第1室内熱交換器121で蒸発し、第2膨張弁123で再度減圧される。第2膨張弁123から吐出された低温低圧の冷媒は、第2室内熱交換器122で蒸発する。そして、室内機120は、第1冷房モードよりも弱く冷却した空気を室内空間に送風する。
[0043]
 第3冷房モードは、第1室内熱交換器121の冷媒蒸発温度が室温Trに等しくなる運転モードである。第3冷房モードは、制御部129が、図2に示されるように、第1膨張弁115及び第2膨張弁123の開度を調節することで実現される。具体的には、制御部129が第1膨張弁115の開度を第2冷房モードにおける最大の開度として、第2膨張弁123の開度を第2冷房モードにおける最小の開度とすることで、第3冷房モードの運転が実行される。第3冷房モードにおいて、第1膨張弁115によって減圧された冷媒は、その温度が室温Trに等しいため、第1室内熱交換器121で熱交換をすることがない。凝縮又は蒸発することなく第1室内熱交換器121を通過した冷媒は、第2膨張弁123で再び減圧され、低温低圧の冷媒が第2室内熱交換器122で蒸発する。そして、室内機120は、第1室内熱交換器121によって冷却されることなく、第2室内熱交換器122のみによって冷却された空気を、室内空間に送風する。
[0044]
 なお、第3冷房モードは、第2冷房モードに含まれる。ただし、第2冷房モードを、第1室内熱交換器121の冷媒蒸発温度が第2室内熱交換器122の冷媒蒸発温度より高く、室温Trより低くなる運転モードとして、第3冷房モードとは異なる運転モードとしてもよい。
[0045]
 除湿モードは、第1室内熱交換器121の冷媒蒸発温度が室温Trより高くなる運転モードである。除湿モードは、制御部129が、図2に示されるように、第1膨張弁115の開度を第3冷房モードにおける開度より開くとともに、第2膨張弁123の開度を第3冷房モードにおける開度より絞ることで実現される。除湿モードでは、第1膨張弁115でわずかに減圧された冷媒、又は減圧されずに第1膨張弁115を通過した冷媒が、第1室内熱交換器121で凝縮し、第2膨張弁123で減圧される。第2膨張弁123から吐出された低温低圧の冷媒は、第2室内熱交換器122で蒸発する。そして、室内機120は、第1室内熱交換器121によって加熱され、第2室内熱交換器122によって露点温度以下に冷却されて除湿された空気を室内空間に送風する。
[0046]
 続いて、空気調和装置100によって実行される空気調和処理について、図4を用いて説明する。図4に示される空気調和処理は、空気調和装置100の電源が投入されることで開始する。
[0047]
 空気調和処理が開始すると、取得部128が情報を取得する(ステップS1)。この情報は、各センサの計測結果を示す温度情報及び湿度情報を含み、ユーザが端末を操作した場合には、ユーザによって指定された設定温度と運転モードとの少なくとも一方を含む。
[0048]
 次に、制御部129は、運転モードが指定されたか否かを判定する(ステップS2)。運転モードが指定されたと判定した場合(ステップS2;Yes)、制御部129は、第1膨張弁115及び第2膨張弁123の開度を図2に示されるように制御して、指定された運転モードで運転する(ステップS3)。具体的には、制御部129は、指定された運転モードを選択し、選択した運転モードに従って、膨張弁を含む空気調和装置100の各構成要素を制御して、室内空間の空気を調和する。これにより、室内送風機124が室内空間に空調空気を送風する。
[0049]
 なお、制御部129は、設定温度が設定されていない場合には、予め定められた目標値を設定温度として用いてもよい。この目標値は、例えば、予めEEPROMに記録された22℃という値、或いは外気温に応じて定まる値である。
[0050]
 また、制御部129は、単に顕熱負荷に応じて図2に示されるように膨張弁の開度を制御してもよいが、これには限られない。制御部129は、センサ121a,122aの計測結果を用いたフィードバック制御により、図3に示されるように顕熱負荷に応じて定まる冷媒蒸発温度が実現されるように、膨張弁の開度を制御してもよい。
[0051]
 このフィードバック制御が行われる場合には、制御部129は、センサ121aの計測結果が図3に示される目標値としての冷媒蒸発温度より高ければ、第1膨張弁115をわずかに閉じ、計測結果が目標値より低ければ第1膨張弁115をわずかに開く。また、制御部129は、センサ122aの計測結果が図3に示される目標値としての冷媒蒸発温度より低ければ、第2膨張弁123をわずかに開き、計測結果が目標値より高ければ第2膨張弁123をわずかに閉じる。
[0052]
 このようなフィードバック制御が行われれば、制御部129は、冷媒蒸発温度を精度よく制御して、空気調和装置100の顕熱能力が設計通りに正確に実現されることとなる。なお、顕熱能力は、冷房運転時の冷房能力と除湿運転時の冷房能力とを含む総称であって、空気調和装置100によって処理される顕熱負荷の容量を意味する。これにより、室内空間の温度が安定し、ひいてはユーザの快適性が向上する。また、冷媒蒸発温度が適正に制御されるため、圧縮機111が液冷媒を吸入して故障することを防ぐことができる。
[0053]
 図4に戻り、ステップS3を実行した後に、制御部129は、ステップS7へ処理を移行する。
[0054]
 一方、運転モードが指定されていないと判定した場合(ステップS2;No)、制御部129は、設定温度が指定されたか否かを判定する(ステップS4)。設定温度が指定されたと判定した場合(ステップS4;Yes)、制御部129は、ステップS6へ処理を移行する。
[0055]
 一方、設定温度が指定されていないと判定した場合(ステップS4;No)、制御部129は、予め定められた目標値を設定温度に指定する(ステップS5)。
[0056]
 次に、制御部129は、第1膨張弁115及び第2膨張弁123の開度を図2に示されるように制御して、現在の顕熱負荷に応じた運転モードで運転する(ステップS6)。これにより、室内送風機124が室内空間に空調空気を送風する。
[0057]
 次に、制御部129は、取得部128から情報を取得する(ステップS7)。この情報には、各センサの計測結果を示す温度情報及び湿度情報が含まれる。
[0058]
 次に、制御部129は、運転モードの移行条件が成立するか否かを判定する(ステップS8)。運転モードの移行条件は、現在の運転モードと、移行後の運転モードに応じて異なる。この移行条件は、予め定められて制御部129のEEPROMに記憶される。移行条件は、取得部128によって取得された温度情報により示される現在の室温、取得部128によって取得された湿度情報により示される現在の室内空間の湿度、圧縮機111の動作周波数、及び現在の運転モードに従った運転の継続時間に応じて成立する。
[0059]
 例えば、運転モードが第1冷房モードから第2冷房モードに移行する条件は、現在の室温が第1閾値より低く、現在の室内空間の湿度が第2閾値より高く、圧縮機111の動作周波数が第3閾値より低く、かつ、第1冷房モードに従った運転が1分間以上継続していることである。また、第3冷房モードを含む第2冷房モードから除湿モードに運転モードが移行する条件は、現在の室温が第4閾値より低く、現在の室内空間の湿度が第5閾値より高く、圧縮機111の動作周波数が第6閾値より低く、かつ、第2冷房モードに従った運転が1分間以上継続していることである。
[0060]
 第1閾値及び第4閾値は、26℃、28℃等の予め定められてEEPROMに記録された値であってもよいし、予め定められたマージンを設定温度に加算した値であってもよい。第2閾値及び第5閾値は、例えば、予め定められてEEPROMに記録された値、設定温度、又は、設定湿度に応じて定められる値である。第3閾値及び第6閾値は、例えば、予め定められてEEPROMに記録された値、又は、圧縮機111が稼働する際の最低動作周波数に、予め定められたマージンを加算した値である。第1閾値と第4閾値を異なる値として、第2閾値と第5閾値を異なる値として、第3閾値と第6閾値を異なる値としてもよい。
[0061]
 ただし、運転モードは、第1冷房モード、第2冷房モード、第3冷房モード及び除湿モードの順で、又は逆順に移行する。すなわち、制御部129は、移行条件が成立すると運転モードを一のモードから他のモードに移行させる。この際に、第1冷房モードから移行する運転モードは第2冷房モードであって、運転モードが第1冷房モードから第3冷房モード又は除湿モードに移行することはない。また、第2冷房モードから移行する運転モードは第1冷房モード又は除湿モードである。なお、第2冷房モードにおいて特定の条件が成立すると運転モードが第3冷房モードに移行する。第3冷房モードから移行する運転モードは、第2冷房モード又は除湿モードであって、運転モードが第3冷房モードから第1冷房モードに移行することはない。また、除湿モードから移行する運転モードは第2冷房モード又は第3冷房モードであって、運転モードが除湿モードから第1冷房モードに移行することはない。
[0062]
 運転モードの移行条件が成立していないと判定した場合(ステップS8;No)、制御部129は、ステップS10に処理を移行する。一方、運転モードの移行条件が成立したと判定した場合(ステップS8;Yes)、制御部129は、成立した移行条件に従って運転モードを移行させる(ステップS9)。具体的には、制御部129は、現在選択されている運転モードとは異なる運転モードを、移行条件に従って選択する。
[0063]
 次に、制御部129は、第1膨張弁115及び第2膨張弁123の開度を図2に示されるように制御して、現在の運転モードで運転する(ステップS10)。これにより、室内送風機124が室内空間に空調空気を送風する。その後、制御部129は、ステップS7以降の処理を繰り返す。
[0064]
 続いて、以上の空気調和処理によって実現される運転モードの推移の例について図5を用いて説明する。図5には、夏の1日に冷房運転及び除湿運転が実行される場合の外気温、室温、及び膨張弁の開度の推移が、共通の時間軸で示されている。
[0065]
 図5に示されるように、昼には、外気温が高く冷房の顕熱負荷が大きいため、空気調和装置100は、第1冷房モードで運転して室内空間を冷却する。昼から夕方にかけて外気温が徐々に低下すると、顕熱負荷も徐々に減少する。室温が設定温度近傍まで低下すると、制御部129は、圧縮機111の動作周波数を低くして冷房能力を落とすこととなる。しかしながら、圧縮機111は最低動作周波数以上で稼働させる必要があるため、この最低動作周波数で運転しても、室温が設定温度以下に低下することとなる。
[0066]
 ここで、第1冷房モードから第2冷房モードに運転モードを移行させるための条件が成立すると、制御部129は、運転モードを第2冷房モードに切り替える。空気調和装置100の冷房能力は、第1冷房モードより第2冷房モードの方が小さいため、運転モードが切り替わると室温がわずかに上昇する。これにより、室温を設定温度の近傍に維持することができる。また、空気調和装置100の潜熱能力は増加するため、空気調和装置100は、除湿も行うことができる。潜熱能力は、除湿能力に相当し、空気調和装置100が処理する室内空間の潜熱負荷の容量を意味する。
[0067]
 夕方から夜にかけて外気温が低下すると、顕熱負荷も徐々に減少する。室温が設定温度近傍まで低下すると、制御部129は、圧縮機111の動作周波数を低くするが、室温が設定温度以下に再び低下する。ここで、運転モードを第3冷房モードに移行させるための条件が成立すると、制御部129は、運転モードを第3冷房モードに切り替える。第3冷房モードに切り替わると、空気調和装置100の顕熱能力は小さくなるため、室温はわずかに上昇する。これにより、室温を設定温度の近傍に維持することができる。また、空気調和装置100の潜熱能力は増加するため、空気調和装置100は、除湿も行うことができる。
[0068]
 深夜になり外気温がさらに低下すると、顕熱負荷もさらに減少する。室温が設定温度近傍まで低下すると、制御部129は、圧縮機111の動作周波数を低くするが、室温が設定温度以下に低下する。ここで、第2冷房モードから除湿モードに運転モードを移行させるための条件が成立すると、制御部129は、運転モードを除湿モードに切り替える。空気調和装置100の顕熱能力は、第2冷房モードより除湿モードの方が小さいため、運転モードが切り替わると室温がわずかに上昇する。これにより、室温を設定温度の近傍に維持することができる。また、空気調和装置100の潜熱能力は増加するため、空気調和装置100は、除湿も行うことができる。
[0069]
 以上、説明したように、本実施の形態に係る空気調和装置100は、第1冷房モードの冷房運転を実行してから第2冷房モードの冷房運転を実行し、第2冷房モードの冷房運転を実行してから除湿モードの除湿運転を実行した。
[0070]
 一般的に、室温が設定温度より低くなると圧縮機を停止し、室温が設定温度より高くなると圧縮機を運転することにより、室温を設定温度の近傍に維持する手法が知られている。しかしながら、圧縮機の頻繁な停止と運転の繰り返しによって、室温及び風量が短い時間間隔で大きく振動したり、除湿が困難になったりして、ユーザの快適性が損なわれる。また、圧縮機の発停回数が増加すると、圧縮機の製品寿命が短くなるおそれがある。
[0071]
 これに対し、本実施の形態では、圧縮機111の最低動作周波数による制約により、冷房運転時に室温を上昇させる必要が生じた場合であっても、圧縮機111を停止させることなく、顕熱能力を小さくして室温を設定温度に維持することが可能となる。すなわち、圧縮機111が頻繁に発停することなく、ユーザの快適性を向上させ、製品の信頼性を向上させることができる。
[0072]
 図6には、空気調和装置100の顕熱能力と潜熱能力との関係が示されている。図6中の第1冷房モードでは、圧縮機111の動作周波数が大きくなるほど顕熱能力が大きくなっている。第1冷房モードと第2冷房モードとの境界は、圧縮機111を最低動作周波数で稼働した状態に相当する。本実施の形態では、図6に示されるように、第1冷房モード、第2冷房モード、第3冷房モード及び除湿モードの順で、又は逆順に運転モードを変更することにより、顕熱能力及び潜熱能力を連続的に調整することができる。したがって、夏の夜、或いは日本における春、梅雨又は秋等の中間期のように熱負荷が小さいときに、室内の温湿度を微調整することが可能となり、ユーザの快適性が向上する。
[0073]
 また、本実施の形態では、第1冷房モード、第2冷房モード、第3冷房モード及び除湿モードの順で、又は逆順に運転モードが移行した。このように運転モードが遷移することにより、空気調和装置100は、顕熱能力及び潜熱能力を連続的に制御することができ、室内空間における温湿度の急激な変動を抑えることができる。また、上述のように運転モードが遷移するため、図2からわかるように、膨張弁の開度は緩やかに連続的に変化する。これにより、冷媒音の発生を極力抑えることができる。
[0074]
 また、移行条件には、圧縮機111の動作周波数が閾値以下であるという条件が含まれた。圧縮機111の動作周波数が小さければ、冷媒流量が少なくなり、運転モードが移行する際に生じる冷媒音を抑制することができる。
[0075]
 また、本実施の形態に係る移行条件は、室内空間の温湿度の計測結果、圧縮機111の動作周波数、及び一の運転モードに従った運転の継続時間が含まれた。これにより、制御部129は、室内空間の顕熱負荷、潜熱負荷、全熱負荷及び負荷変動を加味して運転モードを変更することとなる。したがって、昼から夜への環境変化、又は晴れから雨への天候変化に伴って顕熱負荷及び潜熱負荷が変化しても、室内空間の温湿度はおおよそ一定に保たれ、ユーザの快適性が向上する。
[0076]
 実施の形態2.
 続いて、実施の形態2について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施の形態に係る除湿モードは、第1除湿モードと、室外送風機114の風量が第1除湿モードにおける風量より少ない第2除湿モードとを含む点で、実施の形態1に係るものと異なっている。
[0077]
 第2除湿モードでは、室外送風機114の風量が第1除湿モードよりも少なくなるため、室外熱交換器113と第1室内熱交換器121の冷媒蒸発温度が上昇する。このため、第1室内熱交換器121を通過する空気の温度が、第1除湿モードよりも高くなる。したがって、顕熱能力は第1除湿モードよりゼロに近づく。
[0078]
 本実施の形態に係る運転モードは、第1冷房モード、第2冷房モード、第3冷房モード、第1除湿モード及び第2除湿モードの順で、又は逆順に移行する。すなわち、第2冷房モードから移行する運転モードは、第1冷房モード又は第1除湿モードであって、運転モードが第2冷房モードから第2除湿モードに移行することはない。また、第3冷房モードから移行する運転モードは、第2冷房モード又は第1除湿モードであって、運転モードが第3冷房モードから第2除湿モードに移行することはない。また、第1除湿モードから移行する運転モードは、第2冷房モード、第3冷房モード又は第2除湿モードであって、運転モードが第1除湿モードから第1冷房モードに移行することはない。また、第2除湿モードから移行する運転モードは、第1除湿モードであって、運転モードが第2除湿モードから第1冷房モード、第2冷房モード又は第3冷房モードに移行することはない。
[0079]
 図7には、夏の1日に冷房運転及び除湿運転が実行される場合の外気温、室温、及び室外送風機114の風量の推移が、共通の時間軸で示されている。図7に示されるように、深夜から早朝になり外気温が室温以下に低下すると冷房負荷がゼロになったり、暖房負荷が生じたりする。しかしながら、第1除湿モードで運転を継続しても、圧縮機111の動作周波数の制約により室温が設定温度以下に低下してしまう。
[0080]
 ここで、特定の条件が成立すると、制御部129は、運転モードを第1除湿モードから第2除湿モードに変更して、室外送風機114の風量を小さくする。この条件は、取得部128によって取得された室温が閾値以下であり、取得部128によって取得された室内空間の湿度が閾値以上であり、圧縮機の動作周波数が閾値以下であり、かつ、第1除湿モードに従った運転が1分間以上継続していることである。なお、条件の成立有無を判定するための閾値は、予め定められる値であってもよいし、設定温度に応じて定められてもよい。
[0081]
 空気調和装置100の顕熱能力は、第1除湿モードより第2除湿モードの方が小さいため、運転モードが切り替わると室温はわずかに上昇する。これにより、室温を設定温度の近傍に維持することができる。また、運転モードが切り替わっても潜熱能力は維持されるため、空気調和装置100は、除湿を行うこともできる。
[0082]
 以上、説明したように、空気調和装置100は、第1除湿モードよりも顕熱能力が低い第2除湿モードで運転する。このため、日本における梅雨のように、外気温は低いものの雨により蒸し暑いときに、室内空間の温湿度を調整することが可能になる。また、第2除湿モードにおける顕熱能力がある程度ゼロに近いため、除湿運転から連続的に暖房運転へ運転モードを移行することが可能になる。ひいては、ユーザの快適性が向上する。
[0083]
 実施の形態3.
 続いて、実施の形態3について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施の形態に係る移行条件は、室内空間を有する建物の温度、外気の温湿度、ユーザの体温に応じて成立する点で、実施の形態1に係るものと異なっている。
[0084]
 本実施の形態に係る空気調和装置100は、図8に示されるように、室外機に内蔵されて、外気の温湿度をそれぞれ計測するセンサ116a,117aと、建物の温度を計測するセンサ150aと、端末140に内蔵されて、ユーザの体温を計測するセンサである体温検知部140aと、を有している。取得部128は、各センサの計測結果を示す温度情報及び湿度情報を取得して、制御部129に通知する。そして、制御部129は、温度情報及び湿度情報により示される計測結果に応じて運転モードを移行させる。
[0085]
 以上説明したように、建物の温度、外気の温湿度、及びユーザの体温に応じて運転モードが移行するため、省エネルギーに寄与することが可能となり、ユーザの快適性を向上させることができる。
[0086]
 例えば、ユーザが睡眠をとっている最中に、外気温が急激に低下するとともに外気湿度が急激に上昇した場合において、制御部129は、天候が晴れから雨に変化したものと推測して運転モードを迅速に切り替えることが可能になる。また、室内の温湿度が変化しても、外気の温湿度が変化していなければ、制御部129は、一時的な外乱が生じたものと判定して、運転モードを変更しないと決定することが可能となる。これにより、制御部129は安定した制御を実行し、室内空間の温湿度が一定に保たれてユーザの快適性が向上する。
[0087]
 なお、センサ116a,117aを省いて空気調和装置100を構成し、取得部128は、インターネット上のサーバ装置から外気の温湿度、日射、天候等の気象情報を取得してもよい。
[0088]
 また、センサ150aを省いて空気調和装置100を構成し、制御部129は、センサ127aによって建物温度として計測された室内空間の躯体表面温度から、平均輻射温度又は日射量を推定してもよい。そして、制御部129は、平均輻射温度等の推定結果から、顕熱負荷と潜熱負荷の比率を推定し、顕熱負荷が多いときに室内送風機124の風量を増加させてもよい。
[0089]
 室内送風機124の風量が増加すると、顕熱能力が増加して潜熱能力が減少することとなる。これにより、熱負荷と空気調和装置100の冷房能力が一致する。したがって、室温及び相対湿度を快適な範囲に制御することが可能になる。また、冷媒回路102における低圧側の圧力が上昇し、圧縮機111が生成する圧力差が小さくなるため、消費電力を低減することができる。
[0090]
 実施の形態4.
 続いて、実施の形態4について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施の形態に係る空気調和装置100は、図9に示されるように、ユーザの属性を推定する推定部129bを室内機120が有している点で、実施の形態1に係るものと異なっている。
[0091]
 本実施形態に係る推定部129bは、センサ127aによって計測された赤外線の強度分布から、室内空間の熱分布を表すデータを作成する。そして、推定部129bは、作成した熱分布に基づいて、ユーザの年齢、性別、体感温度、手足温度、寒がり又は暑がりという特性等を含むユーザの属性を推定して、推定結果を制御部129に送信する。制御部129は、推定部129bによる推定結果に応じて移行条件の成立有無を判定する。
[0092]
 以上説明したように、本実施の形態に係る移行条件は、ユーザの属性に応じて成立する。ここで、ユーザの温冷感が中立の範囲内にあっても、足先が冷えたことにより寒く感じられることがある。そこで、推定部129bにより、足先の冷えが推定された場合に、制御部129が、移行条件のうち、室温に関する第1閾値を高い値に修正し、湿度に関する第2閾値を低い値に修正した上で運転モードを変更すれば、体全体の温冷感と、足先又は手等の局所の温冷感と、の双方を快適な状態に保つことができる。
[0093]
 また、暑がりなユーザと寒がりなユーザが同一の室内空間に在室している場合において、制御部129は、寒がりなユーザに合わせて第1温度と第2湿度を修正し、暑がりなユーザに気流を向けてもよい。さらに、性別及び年齢帯の異なるユーザが同一の室内空間に在室している場合においても、制御部129は、優先順位の高いユーザを基準として第1閾値及び第2閾値等を修正し、基準外のユーザに合わせて気流を制御してもよい。これにより、複数のユーザ全体の快適性を向上させることができる。
[0094]
 なお、推定部129bによって推定されたユーザの体温を、実施の形態3に係る体温検知部140aによって計測された体温に代えて用いてもよい。すなわち、実施の形態3において、端末140に内蔵される体温検知部140aを省いて空気調和装置100を構成し、本実施の形態に係る推定部129bによりユーザの体温を検知してもよい。
[0095]
 実施の形態5.
 続いて、実施の形態5について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。本実施の形態に係る制御部129は、特定の条件が成立すると室内送風機124の風量を制御する点で、実施の形態1に係るものと異なっている。
[0096]
 図10には、本実施の形態に係る空気調和装置100の顕熱能力と潜熱能力との関係が示されている。制御部129が室内送風機124の風量を低下させると、図10中の白抜き矢印に示されるように、潜熱能力が増加する。
[0097]
 ここで、第1冷房モード及び第2冷房モードにおいて圧縮機111が比較的小さい動作周波数で稼働する場合には、潜熱能力が小さいため、室内空間における湿度が上昇しやすいと考えられる。そこで、室内空間における温度が閾値以下であって、湿度が閾値より高いという条件が成立するときには、制御部129は、室内送風機124の風量を小さくすることで、潜熱能力を増加させることができる。これにより、顕熱能力及び潜熱能力を幅広く制御することが可能となる。すなわち、一対一に対応する顕熱能力と潜熱能力の1点を制御により実現するのみならず、顕熱能力を維持したまま潜熱能力を増加させることが可能になる。ひいては、室内空間における温湿度の変動を抑えることができる。
[0098]
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態によって限定されるものではない。
[0099]
 例えば、第1膨張弁115及び第2膨張弁123は、流入する二相冷媒の気泡と液滴の粒子を細かくして消音する機能を有していてもよい。
[0100]
 また、センサ125a,126aは、室内機の外部、例えば端末140に設けられていてもよい。
[0101]
 また、制御部129の機能を室外制御部と室内制御部とに分割して、室外機110が、室外機110の各構成要素を制御する室外制御部を有し、室内機120が、室内機120の各構成要素を制御する室内制御部を有していてもよい。
[0102]
 また、第1冷房モードにおいて第2膨張弁123を全開にしても開度が十分ではなく冷媒が減圧されてしまうことがある。そこで、第2膨張弁123を迂回するバイパス回路を冷媒回路102に追加し、第2膨張弁123と並列に接続された電磁弁を設けてもよい。電磁弁が設けられる場合には、第1冷房モードでは電磁弁を全開とする。これにより、冷媒の圧力損失を防ぎ、冷媒回路102を効率よく運転することができる。
[0103]
 また、制御部129のEEPROMに記憶されているプログラムP1を、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical disk)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラムP1をコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。
[0104]
 また、プログラムP1をインターネットに代表される通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。
[0105]
 また、インターネットに代表されるネットワークを介してプログラムP1を転送しながら起動実行することによっても、上述の処理を達成することができる。
[0106]
 さらに、プログラムP1の全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムP1を実行することによっても、上述の処理を達成することができる。
[0107]
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。
[0108]
 また、空気調和装置100の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を専用のハードウェアによって実現してもよい。例えば、取得部128、制御部129及び推定部129bを、FPGA(Field Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)に代表される回路を用いて構成すれば、空気調和装置100の省電力化を図ることができる。
[0109]
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。

産業上の利用可能性

[0110]
 本発明は、室内空間の空気を調和する技術に適している。

符号の説明

[0111]
 100 空気調和装置、 101 冷媒配管、 102 冷媒回路、 110 室外機、 111 圧縮機、 112 四方弁、 113 室外熱交換器、 114 室外送風機、 115 第1膨張弁、 116a,117a,121a,122a,125a,126a,127a,150a センサ、 120 室内機、 121 第1室内熱交換器、 122 第2室内熱交換器、 123 第2膨張弁、 124 室内送風機、 128 取得部、 129 制御部、 129b 推定部、 140 端末、 140a 体温検知部、 L1,L2,L11,L12 線、 P1 プログラム。

請求の範囲

[請求項1]
 第1冷房モード、第2冷房モード及び除湿モードから選択した運転モードで稼働する空気調和装置であって、
 圧縮機、室外熱交換器、開度可変の第1膨張弁、第1室内熱交換器、開度可変の第2膨張弁、及び第2室内熱交換器をこの順に通して冷媒を循環させる冷媒回路と、
 空調対象となる室内空間における空気の温度を示す温度情報を取得する取得手段と、
 前記第1室内熱交換器と前記第2室内熱交換器とによって熱交換された空気を前記室内空間に送風する室内送風手段と、を備え、
 前記第1冷房モードでは、前記第1膨張弁と前記第2膨張弁との開度が予め定められた開度となることで、前記第1室内熱交換器の冷媒蒸発温度が前記第2室内熱交換器の冷媒蒸発温度に等しくなり、
 前記第2冷房モードでは、前記第1膨張弁の開度が前記第1冷房モードにおける開度以上となり前記第2膨張弁の開度が前記第1冷房モードにおける開度以下となることで、前記第1室内熱交換器の冷媒蒸発温度が、前記第2室内熱交換器の冷媒蒸発温度より高く、前記温度情報により示される温度より低くなり、
 前記除湿モードでは、前記第1膨張弁の開度が前記第2冷房モードにおける開度以上となり前記第2膨張弁の開度が前記第2冷房モードにおける開度以下となることで、前記第1室内熱交換器の冷媒蒸発温度が前記温度情報により示される温度より高くなる、空気調和装置。
[請求項2]
 前記室外熱交換器に空気を送風する室外送風手段をさらに備え、
 前記除湿モードは、第1除湿モードと、前記室外送風手段の風量が前記第1除湿モードにおける風量より少ない第2除湿モードと、を含む、
 請求項1に記載の空気調和装置。
[請求項3]
 運転モードは、予め定められた条件が成立すると、前記第1冷房モードと前記第2冷房モードと前記除湿モードとのうちの一のモードから他のモードに移行し、
 前記第1冷房モードから移行する運転モードは、前記第2冷房モードであり、
 前記第2冷房モードから移行する運転モードは、前記第1冷房モード又は前記除湿モードであり、
 前記除湿モードから移行する運転モードは、前記第2冷房モードである、
 請求項1又は2に記載の空気調和装置。
[請求項4]
 前記取得手段は、前記室内空間における空気の湿度を示す湿度情報を取得し、
 前記条件は、前記温度情報により示される温度と、前記湿度情報により示される湿度と、前記圧縮機の動作周波数と、のうちの少なくとも1つに応じて成立する、
 請求項3に記載の空気調和装置。
[請求項5]
 運転モードが前記第1冷房モードである場合において、前記温度情報により示される温度が第1閾値より低く、前記湿度情報により示される湿度が第2閾値より高く、前記圧縮機の動作周波数が第3閾値より低いときに、前記条件が成立して運転モードが前記第2冷房モードに移行し、
 運転モードが前記第2冷房モードである場合において、前記温度情報により示される温度が第4閾値より低く、前記湿度情報により示される湿度が第5閾値より高く、前記圧縮機の周波数が第6閾値より低いときに、前記条件が成立して運転モードが前記除湿モードに移行する、
 請求項4に記載の空気調和装置。
[請求項6]
 前記条件は、一の運転モードに従った運転の継続時間に応じて成立する、
 請求項3から5のいずれか一項に記載の空気調和装置。
[請求項7]
 前記温度情報は、前記室内空間を有する建物の温度と、室外の温度と、を示し、
 前記条件は、前記温度情報により示される前記建物の温度と前記室外の温度と、体温検知手段によって検知された前記室内空間に在室するユーザの体温と、のうちの少なくとも1つに応じて成立する、
 請求項3から6のいずれか一項に記載の空気調和装置。
[請求項8]
 前記室内空間に在室するユーザの属性を推定する推定手段をさらに備え、
 前記条件は、前記推定手段による推定結果に応じて成立し、
 前記属性には、前記ユーザの性別と年齢との少なくとも1つが含まれる、
 請求項3から7のいずれか一項に記載の空気調和装置。
[請求項9]
 第1冷房モード、第2冷房モード及び除湿モードから選択した運転モードで室内空間に空調空気を送風する空気調和方法であって、
 前記第1冷房モードでは、圧縮機、室外熱交換器、開度可変の第1膨張弁、第1室内熱交換器、開度可変の第2膨張弁、及び第2室内熱交換器をこの順に通して冷媒を循環させる冷媒回路のうちの前記第1膨張弁と前記第2膨張弁との開度が予め定められた開度となることで、前記第1室内熱交換器の冷媒蒸発温度が前記第2室内熱交換器の冷媒蒸発温度に等しくなり、
 前記第2冷房モードでは、前記第1膨張弁の開度が前記第1冷房モードにおける開度以上となり前記第2膨張弁の開度が前記第1冷房モードにおける開度以下となることで、前記第1室内熱交換器の冷媒蒸発温度が、前記第2室内熱交換器の冷媒蒸発温度より高く、前記室内空間における空気の温度より低くなり、
 前記除湿モードでは、前記第1膨張弁の開度が前記第2冷房モードにおける開度以上となり前記第2膨張弁の開度が前記第2冷房モードにおける開度以下となることで、前記第1室内熱交換器の冷媒蒸発温度が前記室内空間における空気の温度より高くなる、空気調和方法。
[請求項10]
 空気調和装置を制御するコンピュータを、
 空調対象となる室内空間における空気の温度を示す温度情報を取得する取得手段、
 前記空気調和装置の運転モードを制御して、第1冷房モード、第2冷房モード及び除湿モードから一の運転モードを選択する制御手段、
 として機能させ、
 前記第1冷房モードでは、前記空気調和装置を構成する圧縮機、室外熱交換器、開度可変の第1膨張弁、第1室内熱交換器、開度可変の第2膨張弁、及び第2室内熱交換器をこの順に通して冷媒を循環させる冷媒回路のうちの前記第1膨張弁と前記第2膨張弁との開度が予め定められた開度となることで、前記第1室内熱交換器の冷媒蒸発温度が前記第2室内熱交換器の冷媒蒸発温度に等しくなり、
 前記第2冷房モードでは、前記第1膨張弁の開度が前記第1冷房モードにおける開度以上となり前記第2膨張弁の開度が前記第1冷房モードにおける開度以下となることで、前記第1室内熱交換器の冷媒蒸発温度が、前記第2室内熱交換器の冷媒蒸発温度より高く、前記温度情報により示される温度より低くなり、
 前記除湿モードでは、前記第1膨張弁の開度が前記第2冷房モードにおける開度以上となり前記第2膨張弁の開度が前記第2冷房モードにおける開度以下となることで、前記第1室内熱交換器の冷媒蒸発温度が前記温度情報により示される温度より高くなる、プログラム。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]