Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2018035718) REAL-TIME INDUSTRIAL PLANT PRODUCTION PREDICTION AND OPERATION OPTIMIZATION
Latest bibliographic data on file with the International Bureau   

Pub. No.: WO/2018/035718 International Application No.: PCT/CN2016/096386
Publication Date: 01.03.2018 International Filing Date: 23.08.2016
IPC:
G05B 13/02 (2006.01)
G PHYSICS
05
CONTROLLING; REGULATING
B
CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
13
Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
02
electric
Applicants:
HOU, Fang [CN/CN]; CN (US)
ACCENTURE GLOBAL SOLUTIONS LIMITED [IE/IE]; 3 Grand Canal Plaza Grand Canal Street Upper 4 Dublin, IE
Inventors:
HOU, Fang; CN
WU, Yikai; CN
REN, Kexin; CN
SHEN, Hui; CN
MIN, Xinyong; CN
CHENG, Xiaopei; CN
Agent:
KING & WOOD MALLESONS; 20th Floor, East Tower, World Financial Centre No. 1 Dongsanhuan Zhonglu Chaoyang District Beijing 100020, CN
Priority Data:
Title (EN) REAL-TIME INDUSTRIAL PLANT PRODUCTION PREDICTION AND OPERATION OPTIMIZATION
(FR) PRÉDICTION DE PRODUCTION D'ÉTABLISSEMENT INDUSTRIEL EN TEMPS RÉEL, ET OPTIMISATION DE FONCTIONNEMENT
Abstract:
(EN) Direct measurement and simulation of real-time production rates of chemical products in complex chemical plants is complex. A predictive model developed based on machine learning algorithms using historical sensor data and production data provides accurate real-time prediction of production rates of chemical products in chemical plants. An optimization model based on machine learning algorithms using clustered historical sensor data and production data provides optimal values for controllable parameters for production maximization.
(FR) La mesure directe et la simulation de taux de production en temps réel de produits chimiques dans des usines chimiques complexes sont complexes. Un modèle de prédiction développé sur la base d'algorithmes d'apprentissage machine utilisant des données de capteur et des données de production historiques fournit une prédiction en temps réel précise de taux de production de produits chimiques dans des usines chimiques. Un modèle d'optimisation basé sur des algorithmes d'apprentissage machine utilisant des données de capteur et des données de production historiques regroupées fournit des valeurs optimales pour des paramètres pouvant être commandés pour la maximisation de la production.
front page image
Designated States: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
African Regional Intellectual Property Organization (ARIPO) (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW)
Eurasian Patent Office (AM, AZ, BY, KG, KZ, RU, TJ, TM)
European Patent Office (EPO) (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)
Publication Language: English (EN)
Filing Language: English (EN)