Processing

Please wait...

Settings

Settings

Goto Application

1. WO2018014494 - BORON NITRIDE NANOMATERIAL, AND MANUFACTURING METHOD AND APPLICATION THEREOF

Publication Number WO/2018/014494
Publication Date 25.01.2018
International Application No. PCT/CN2016/110420
International Filing Date 16.12.2016
IPC
C01B 21/064 2006.01
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF
21Nitrogen; Compounds thereof
06Binary compounds of nitrogen with metals, with silicon, or with boron
064with boron
CPC
B01J 19/0013
BPERFORMING OPERATIONS; TRANSPORTING
01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
19Chemical, physical or physico-chemical processes in general; Their relevant apparatus
0006Controlling or regulating processes
0013Controlling the temperature of the process
B01J 2219/00051
BPERFORMING OPERATIONS; TRANSPORTING
01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
2219Chemical, physical or physico-chemical processes in general; Their relevant apparatus
00049Controlling or regulating processes
00051Controlling the temperature
B82Y 30/00
BPERFORMING OPERATIONS; TRANSPORTING
82NANOTECHNOLOGY
YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
30Nanotechnology for materials or surface science, e.g. nanocomposites
B82Y 40/00
BPERFORMING OPERATIONS; TRANSPORTING
82NANOTECHNOLOGY
YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
40Manufacture or treatment of nanostructures
C01B 21/0641
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
21Nitrogen; Compounds thereof
06Binary compounds of nitrogen with metals, with silicon, or with boron, ; or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
064with boron
0641Preparation by direct nitridation of elemental boron
C01B 21/0646
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
21Nitrogen; Compounds thereof
06Binary compounds of nitrogen with metals, with silicon, or with boron, ; or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
064with boron
0646Preparation by pyrolysis of boron and nitrogen containing compounds
Applicants
  • 中国科学院苏州纳米技术与纳米仿生研究所 SUZHOU INSTITUTE OF NANO-TECH AND NANO-BIONICS (SINANO), CHINESE ACADEMY OF SCIE [CN]/[CN]
Inventors
  • 姚亚刚 YAO, Yagang
  • 李涛涛 LI, Taotao
Agents
  • 南京利丰知识产权代理事务所(特殊普通合伙) NANJING LI&FENG INTELLECTUAL PROPERTY AGENCY (SPECIAL GENERAL PARTNERSHIP)
Priority Data
201610583620.122.07.2016CN
201610584210.922.07.2016CN
201610584293.122.07.2016CN
Publication Language Chinese (ZH)
Filing Language Chinese (ZH)
Designated States
Title
(EN) BORON NITRIDE NANOMATERIAL, AND MANUFACTURING METHOD AND APPLICATION THEREOF
(FR) NANOMATÉRIAU DE NITRURE DE BORE, SON PROCÉDÉ DE FABRICATION ET SON APPLICATION
(ZH) 氮化硼纳米材料、其制备方法与应用
Abstract
(EN)
A boron nitride nanomaterial, and a manufacturing method and application thereof. The manufacturing method comprises: heating a precursor in a nitrogen-containing reaction atmosphere to a high temperature for the reaction to take place and obtaining a boron nitride nanomaterial. The precursor comprises boron and at least a metallic element and/or a non-metallic element other than boron. The metallic element is selected from at least one of the following elements: lithium, beryllium, magnesium, strontium, barium, aluminum, gallium, indium, zinc, and titanium. The non-metallic element comprises silicon. The boron nitride nanomaterial manufacturing method is simple and controllable, has a low cost, uses cheap and easily acquired raw materials, and has a high conversion rate, thereby facilitating mass production. Various boron nitride nanomaterials obtained by using the method also feature the advantages of excellent quality and controllable morphology. The invention has excellent prospects of applications in multiple sectors, including electronic devices, deep ultraviolet light emission, composite material, heat dissipation material, friction material, drug loading, catalyst loading, and the like.
(FR)
L'invention concerne un nanomatériau de nitrure de bore, son procédé de fabrication et son application. Le procédé de fabrication consiste à : chauffer un précurseur dans une atmosphère de réaction contenant de l'azote à une température élevée pour que la réaction ait lieu et obtenir un nanomatériau de nitrure de bore. Le précurseur comprend du bore et au moins un élément métallique et/ou un élément non métallique autre que le bore. L'élément métallique est choisi parmi au moins un des éléments suivants : lithium, béryllium, magnésium, strontium, baryum, aluminium, gallium, indium, zinc et titane. L'élément non métallique comprend du silicium. Le procédé de fabrication de nanomatériau de nitrure de bore est simple et contrôlable, a un faible coût, utilise des matières premières peu coûteuses et facilement obtenues, et a un taux de conversion élevé, facilitant ainsi la production de masse. Divers nanomatériaux de nitrure de bore obtenus à l'aide du procédé présentent également les avantages d'une excellente qualité et d'une morphologie contrôlable. L'invention présente d'excellentes perspectives d'applications dans des secteurs multiples, y compris des dispositifs électroniques, une émission de lumière ultraviolette profonde, un matériau composite, un matériau de dissipation de chaleur, un matériau de friction, un chargement de médicament, un chargement de catalyseur et similaire.
(ZH)
一种氮化硼纳米材料、其制备方法与应用。所述的制备方法包括:将前驱物在含氮反应气氛中加热至高温进行反应,制得氮化硼纳米材料;所述前驱物包含硼元素以及至少一种金属元素和/或除硼元素之外的至少一种非金属元素,所述金属元素选自锂、铍、镁、钙、锶、钡、铝、镓、铟、锌、钛中的至少一种,所述非金属元素包括硅。所述氮化硼纳米材料制备方法简单可控,成本低廉,原料廉价易得且转化率高,利于实现批量生产,同时所获的各类氮化硼纳米材料还具有质量优良,形貌可控等优点,在电子器件、深紫外发光、复合材料、散热材料、摩擦材料、药物负载、催化剂负载等诸多领域都极具良好应用前景。
Latest bibliographic data on file with the International Bureau