(EN) The present invention belongs to the field of optoelectronic device preparation. A high luminous efficiency gallium nitride-based light emitting diode (LED) and a preparation method therefor, wherein the LED may maintain a relatively high photoelectric conversion efficiency when a large electrical current is introduced, thereby mitigating the droop effect. The specific structure of the LED comprises two sections, wherein one section is a bottom layer and a light emitting layer (104) which are grown by using MOCVD technology, and the other section is a P-type layer grown by using molecular beam epitaxy technology; that is, a gallium-polar buffer layer (101), a non-doped nitride layer (102), an N-type nitride layer (103) and a multi-quantum-well luminescent layer (104) are grown on a sample by using MOCVD technology; the sample is then transferred into a molecular beam epitaxial apparatus reaction chamber for growing a nitrogen-polar electron barrier layer (205), a P-type nitride layer (206) and a P-type nitride contact layer (207). The preparation method may reduce the energy band bending caused by polarization between the electron barrier layer (205) and the multi-quantum-well luminescent layer (104), not only increasing the barrier height for electrons overshooting to a P-type layer, but also reducing the barrier for hole injection into the multi-quantum-well region.
(FR) La présente invention appartient au domaine de la préparation de dispositif optoélectronique. L'invention concerne une diode électroluminescente (DEL) à base de nitrure de gallium à haut rendement lumineux et son procédé de préparation, la DEL pouvant maintenir un rendement de conversion photoélectrique relativement élevé lorsqu'un courant électrique important est introduit, ce qui permet d'atténuer l'effet de chute. La structure spécifique de la DEL comprend deux sections, une section étant une couche inférieure et une couche électroluminescente (104) qui sont développées à l'aide de la technologie MOCVD, et l'autre section est une couche de type P développée à l'aide d'une technologie d'épitaxie par jet moléculaire; à savoir, une couche tampon de gallium polaire (101), une couche de nitrure non dopée (102), une couche de nitrure de type N (103) et une couche luminescente à puits quantiques multiples (104) sont développées sur un échantillon à l'aide de la technologie MOCVD; l'échantillon est ensuite transféré dans la chambre de réaction d'un appareil d'épitaxie par jet moléculaire pour faire croître une couche barrière d'électrons d'azote polaire (205), une couche de nitrure de type P (206) et une couche de contact de nitrure de type P (207). Le procédé de préparation peut réduire la flexion de la bande d'énergie provoquée par la polarisation entre la couche barrière d'électrons (205) et la couche luminescente à puits quantiques multiples (104), augmentant non seulement la hauteur de la barrière des électrons dépassant vers une couche de type P, mais réduisant également la barrière pour l'injection de trous dans la région de puits quantiques multiples.
(ZH) 一种高光效氮化镓基发光二极管(LED)及制备方法,属于光电器件制备领域,LED在大电流注入下能维持较高的光电转换效率,降低Droop效应。具体结构包含MOCVD技术生长的底层、发光层(104)及分子束外延技术生长的p型层两部分,即:MOCVD技术生长镓极性缓冲层(101)、非掺氮化物层(102)、N型氮化物层(103)、多量子阱发光层(104);然后将样品转移至分子束外延设备反应室,生长氮极性电子阻挡层(205)、P型氮化物层(206)及P型氮化物接触层(207)。制备方法能够降低电子阻挡层(205)与多量子阱发光层(104)之间由于极化造成的能带弯曲,不仅能增加电子过冲到P型层的势垒高度,而且能降低空穴注入到多量子阱区的势垒。