Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2017148523) NON-PARAMETRIC AUDIO CLASSIFICATION
Latest bibliographic data on file with the International Bureau   

Pub. No.: WO/2017/148523 International Application No.: PCT/EP2016/054586
Publication Date: 08.09.2017 International Filing Date: 03.03.2016
IPC:
G10L 15/08 (2006.01) ,G10L 15/00 (2013.01) ,G10L 15/10 (2006.01) ,G10L 15/28 (2013.01) ,G10L 17/02 (2013.01) ,G10L 17/04 (2013.01) ,G10L 25/51 (2013.01)
G PHYSICS
10
MUSICAL INSTRUMENTS; ACOUSTICS
L
SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
15
Speech recognition
08
Speech classification or search
G PHYSICS
10
MUSICAL INSTRUMENTS; ACOUSTICS
L
SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
15
Speech recognition
G PHYSICS
10
MUSICAL INSTRUMENTS; ACOUSTICS
L
SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
15
Speech recognition
08
Speech classification or search
10
using distance or distortion measures between unknown speech and reference templates
G PHYSICS
10
MUSICAL INSTRUMENTS; ACOUSTICS
L
SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
15
Speech recognition
28
Constructional details of speech recognition systems
G PHYSICS
10
MUSICAL INSTRUMENTS; ACOUSTICS
L
SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
17
Speaker identification or verification
02
Preprocessing operations, e.g. segment selection; Pattern representation or modelling, e.g. based on linear discriminant analysis [LDA] or principal components; Feature selection or extraction
G PHYSICS
10
MUSICAL INSTRUMENTS; ACOUSTICS
L
SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
17
Speaker identification or verification
04
Training, enrolment or model building
G PHYSICS
10
MUSICAL INSTRUMENTS; ACOUSTICS
L
SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
25
Speech or voice analysis techniques not restricted to a single one of groups G10L15/-G10L21/129
48
specially adapted for particular use
51
for comparison or discrimination
Applicants:
TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) [SE/SE]; 164 83 Stockholm, SE
Inventors:
GRANCHAROV, Volodya; SE
SVERRISSON, Sigurdur; SE
Agent:
ERICSSON; Torshamnsgatan 21-23 164 80 Stockholm, SE
Priority Data:
Title (EN) NON-PARAMETRIC AUDIO CLASSIFICATION
(FR) CLASSIFICATION AUDIO NON PARAMÉTRIQUE
Abstract:
(EN) There is provided mechanisms for non-parametric audio classification. A method is performed by a classification device. The method comprises obtaining a short-term frequency representation of an audio waveform, the short-term frequency representation defining an input sequence divided into input vectors. The method comprises determining per-class posterior probabilities for at least two classes. Each per-class posterior probability is based on a weighted sum of pre-stored per-cluster posterior probabilities for the at least two classes. Each class represents a unique audio classification property. The method comprises classifying the input sequence to belong to the class for which the per-class posterior probability is largest.
(FR) La présente invention concerne des mécanismes pour la classification audio non paramétrique. Un procédé est mis en œuvre par un dispositif de classification. Le procédé consiste à obtenir une représentation de fréquence à court terme d'un signal audio, cette représentation de fréquence à court terme définissant une séquence d'entrée divisée en vecteurs d'entrée, et à déterminer des probabilités a posteriori par classe pour au moins deux classes. Chaque probabilité a posteriori par classe est basée sur la somme pondérée de probabilités a posteriori par grappe mémorisées au préalable pour le minimum de deux classes. Chaque classe représente une propriété de classification audio unique. Le procédé consiste à classifier la séquence d'entrée pour qu'elle appartienne à la classe dont la probabilité a posteriori par classe est la plus importante.
front page image
Designated States: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
African Regional Intellectual Property Organization (ARIPO) (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW)
Eurasian Patent Office (AM, AZ, BY, KG, KZ, RU, TJ, TM)
European Patent Office (EPO) (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)
Publication Language: English (EN)
Filing Language: English (EN)