Some content of this application is unavailable at the moment.
If this situation persists, please contact us atFeedback&Contact
1. (WO2017091147) HIGH-THROUGHPUT IMAGING-BASED METHODS FOR PREDICTING CELL-TYPE-SPECIFIC TOXICITY OF XENOBIOTICS WITH DIVERSE CHEMICAL STRUCTURES
Latest bibliographic data on file with the International Bureau

Pub. No.: WO/2017/091147 International Application No.: PCT/SG2016/050554
Publication Date: 01.06.2017 International Filing Date: 09.11.2016
Chapter 2 Demand Filed: 17.07.2017
IPC:
G01N 33/50 (2006.01) ,G06F 19/00 (2011.01) ,G06T 7/00 (2017.01)
G PHYSICS
01
MEASURING; TESTING
N
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
33
Investigating or analysing materials by specific methods not covered by groups G01N1/-G01N31/131
48
Biological material, e.g. blood, urine; Haemocytometers
50
Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
F
ELECTRIC DIGITAL DATA PROCESSING
19
Digital computing or data processing equipment or methods, specially adapted for specific applications
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
T
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
7
Image analysis, e.g. from bit-mapped to non bit-mapped
Applicants:
AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH [SG/SG]; 1 Fusionopolis Way, #20-10 Connexis, Singapore 138632, SG
Inventors:
LOO, Lit-Hsin; SG
LEE, Jia Ying; SG
SU, Ran; SG
ZINK, Daniele; SG
XIONG, Sijing; SG
Agent:
MATTEUCCI, Gianfranco; SG
Priority Data:
10201509598X20.11.2015SG
Title (EN) HIGH-THROUGHPUT IMAGING-BASED METHODS FOR PREDICTING CELL-TYPE-SPECIFIC TOXICITY OF XENOBIOTICS WITH DIVERSE CHEMICAL STRUCTURES
(FR) PROCÉDÉS BASÉS SUR UNE IMAGERIE À HAUT DÉBIT PERMETTANT DE PRÉDIRE LA TOXICITÉ SPÉCIFIQUE À UN TYPE DE CELLULE DE XÉNOBIOTIQUES AYANT DIVERSES STRUCTURES CHIMIQUES
Abstract:
(EN) The present invention provides methods for the prediction of in vivo cell-specific toxicity of a compound that combines high-throughput imaging of cultured cells, quantitative phenotypic profiling, and machine learning methods. More particularly, the invention provides a method for the prediction of in vivo renal proximal tubular-, bronchial-epithelial-, and alveolar-cell-specific toxicities of a soluble or particulate compound that comprises contacting cultured human kidney and pulmonary cells with the compound at a range of concentrations, then labelling the cells with DNA, yH2AX and actin markers and obtaining textural features, spatial correlation features, ratios of the markers, intensity features, cell count and morphology, estimating dose response curves and performing automatic classification of the compound using a random-forest algorithm.
(FR) La présente invention concerne des procédés de prédiction de la toxicité spécifique à des cellules in vivo d'un composé qui combine une imagerie à haut débit de cellules cultivées, un profil phénotypique quantitatif, ainsi que des procédés d'apprentissage automatique. Plus particulièrement, l'invention concerne un procédé de prédiction des toxicités spécifiques à des cellules tubulaires proximales rénales, épithéliales bronchiques, et alvéolaires in vivo, d'un composé soluble ou particulaire qui consiste à mettre en contact des cellules humaines cultivées des reins et des poumons avec le composé à une plage de concentrations, à marquer ensuite les cellules avec des marqueurs de l'ADN, de la protéine γH2AX et de l'actine et à obtenir des caractéristiques de texture, des caractéristiques de corrélation spatiale, des rapports des marqueurs, des caractéristiques d'intensité, une numération et une morphologie des cellules, à estimer des courbes dose-réponse et à réaliser une classification automatique du composé à l'aide d'un algorithme de forêts aléatoires.
Designated States: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
African Regional Intellectual Property Organization (ARIPO) (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW)
Eurasian Patent Organization (AM, AZ, BY, KG, KZ, RU, TJ, TM)
European Patent Office (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)
Publication Language: English (EN)
Filing Language: English (EN)
Also published as:
SG11201804144UKR1020180086438EP3377896CN108885204