Search International and National Patent Collections
Some content of this application is unavailable at the moment.
If this situation persists, please contact us atFeedback&Contact
1. (WO2017090194) RISK ASSESSMENT METHOD, RISK ASSESSMENT PROGRAM, AND INFORMATION PROCESSING DEVICE
Latest bibliographic data on file with the International Bureau

Pub. No.: WO/2017/090194 International Application No.: PCT/JP2015/083425
Publication Date: 01.06.2017 International Filing Date: 27.11.2015
IPC:
G06N 3/08 (2006.01)
G PHYSICS
06
COMPUTING; CALCULATING; COUNTING
N
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
3
Computer systems based on biological models
02
using neural network models
08
Learning methods
Applicants:
富士通株式会社 FUJITSU LIMITED [JP/JP]; 神奈川県川崎市中原区上小田中4丁目1番1号 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa 2118588, JP
Inventors:
遠藤 利生 ENDOH, Toshio; JP
Agent:
伊東 忠重 ITOH, Tadashige; JP
Priority Data:
Title (EN) RISK ASSESSMENT METHOD, RISK ASSESSMENT PROGRAM, AND INFORMATION PROCESSING DEVICE
(FR) PROCÉDÉ D'ÉVALUATION DE RISQUES, PROGRAMME D'ÉVALUATION DE RISQUES ET DISPOSITIF DE TRAITEMENT D'INFORMATIONS
(JA) リスク評価方法、リスク評価プログラム及び情報処理装置
Abstract:
(EN) Provided is a risk assessment method wherein a computer performs processing to: receive training data and perform machine learning using a neural network, thereby generating weights for a hierarchy of a plurality of synapses; and calculate data distance associated with at least one permission level, which includes one or more of the generated weights, on the basis of the training data and on the basis of restored data generated using the one or more weights in the at least one permission level.
(FR) L'invention concerne un procédé d'évaluation de risque selon lequel un ordinateur effectue un traitement pour : la réception de données d’apprentissage et l'exécution d'un apprentissage automatique utilisant un réseau neuronal, ce qui permet la génération de poids pour une hiérarchie d'une pluralité de synapses ; et le calcul d'une distance de données associée à au moins un niveau de permission comprenant un ou plusieurs poids générés, en fonction des données d'apprentissage et en fonction de données restaurées générées à l'aide desdits poids dans lesdits niveaux de permission.
(JA) 訓練データを入力して、ニューラルネットワークを用いた機械学習を実行し、前記機械学習により生成された複数の階層のシナプスの重みのうち、少なくとも1つの許可レベルの前記重みを使用してそれぞれ生成された復元データ、及び前記訓練データに基づき、前記許可レベルに対応したデータ距離を算出する処理をコンピュータが実行するリスク評価方法が提供される。
front page image
Designated States: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
African Regional Intellectual Property Organization (ARIPO) (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW)
Eurasian Patent Organization (AM, AZ, BY, KG, KZ, RU, TJ, TM)
European Patent Office (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG)
Publication Language: Japanese (JA)
Filing Language: Japanese (JA)
Also published as:
EP3382609