Processing

Please wait...

Settings

Settings

Goto Application

1. WO2013152962 - NONLINEAR CROSS-POLARIZATION MITIGATION ALGORITHM

Publication Number WO/2013/152962
Publication Date 17.10.2013
International Application No. PCT/EP2013/056747
International Filing Date 28.03.2013
IPC
H04B 10/61 2013.01
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
60Receivers
61Coherent receivers
CPC
H04B 10/614
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
60Receivers
61Coherent receivers
614comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
H04B 10/6162
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
60Receivers
61Coherent receivers
616Details of the electronic signal processing in coherent optical receivers
6162Compensation of polarization related effects, e.g., PMD, PDL
H04B 10/6163
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
60Receivers
61Coherent receivers
616Details of the electronic signal processing in coherent optical receivers
6163Compensation of non-linear effects in the fiber optic link, e.g. self-phase modulation [SPM], cross-phase modulation [XPM], four wave mixing [FWM]
H04B 10/6166
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
60Receivers
61Coherent receivers
616Details of the electronic signal processing in coherent optical receivers
6166Polarisation demultiplexing, tracking or alignment of orthogonal polarisation components
H04J 14/06
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
JMULTIPLEX COMMUNICATION
14Optical multiplex systems
06Polarisation multiplex systems
Applicants
  • ALCATEL LUCENT [FR]/[FR]
Inventors
  • SALSI, Massimiliano
  • GHAZISAEIDI, Amirhossein
  • SERENA, Paolo
Agents
  • MILDNER, Volker
Priority Data
12305439.713.04.2012EP
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) NONLINEAR CROSS-POLARIZATION MITIGATION ALGORITHM
(FR) ALGORITHME DE LIMITATION DE POLARISATION CROISÉE NON LINÉAIRE
Abstract
(EN)
The present document relates to optical transmission systems. In particular, the present document relates to methods and systems for the mitigation of Cross- Polarization Modulation (XPOLM) in optical transmission systems.A coherent optical receiver (200) adapted to receive an optical signal transmitted over an optical transmission channel exhibiting XPOLM is described. The received optical signal comprises a first polarization component and a second polarization component. The first and second polarization components comprise sequences of Mary phase shift keying, referred to as MPSK, symbols, respectively, M being an integer, with M > 2. The coherent optical receiver(200)comprises a conversion and processing unit (201, 202) adapted to generate a set of digital signals based on the received optical signal; a polarization de-multiplexing unit (203) adapted to de-multiplex the set of digital signals into a first two dimensional, referred to as complex, component in a first polarization axis and a second complex component in a second polarization axis; and an XPOLM compensation unit (204) adapted to transform the first and second complex components into the Stokes space, thereby yielding a set of Stokes parameters; determine a rotation of the first and second polarization axes based on the set of Stokes parameters; and determine XPOLM compensated first and second complex components by transforming the first and second complex components in accordance to the determined rotation of the first and second polarization axes.
(FR)
La présente invention concerne les systèmes de transmission optique. En particulier, la présente invention concerne des procédés et des systèmes de limitation de modulation croisée de polarisation (XPOLM) dans des systèmes de transmission optique. Un récepteur optique cohérent (200), conçu pour recevoir un signal optique transmis sur un canal de transmission optique présentant une XPOLM, est décrit. Le signal optique reçu comprend une première composante de polarisation et une seconde composante de polarisation. Les première et seconde composantes de polarisation comportent des séquences de symboles de modulation par déplacement de phase à M états, appelée MPSK, respectivement, M étant un entier et M > 2. Le récepteur optique cohérent (200) comporte une unité de conversion et de traitement (201, 202) conçue pour générer un ensemble de signaux numériques sur la base du signal optique reçu; une unité de démultiplexage de polarisation (203) conçue pour le démultiplexage de l'ensemble de signaux numériques en une première composante bidimensionnelle, appelée complexe, suivant un premier axe de polarisation et une seconde composante complexe suivant un second axe de polarisation; une unité de compensation de XPOLM (204) conçue pour transformer les première et seconde composantes complexes en un espace de Stokes, produisant ainsi un ensemble de paramètres de Stokes; pour déterminer une rotation des premier et second axes de polarisation sur la base de l'ensemble de paramètres de Stokes; pour déterminer des première et seconde composantes complexes à XPOLM compensée par transformation des première et seconde composantes complexes conformément à la rotation déterminée des premier et second axes de polarisation.
Latest bibliographic data on file with the International Bureau