Some content of this application is unavailable at the moment.
If this situation persist, please contact us atFeedback&Contact
1. (WO2013110993) METHOD FOR MANAGING THE CHARGE IN A MELTING FURNACE AND CORRESPONDING LOADING APPARATUS
Note: Text based on automatic Optical Character Recognition processes. Please use the PDF version for legal matters

CLAIMS

1. Method for managing the metal charge (1 1) in a melting furnace (14) comprising at least a step of depositing a plurality of differentiated types of metal materials in a storage zone (13), said differentiated types comprising at least low value scrap, scrap with a greater value, slabs of cast iron or other, a step of picking up and loading said metal materials from said storage zone (13) onto feed means (12) by means of loading means (19-22), and a feed step in which said feed means (12) unload said materials into the melting furnace (14), characterized in that said deposit step provides to divide said storage zone (13) into a plurality of distinct and specialized areas (33-40) in each of which a different type of materials (23-30) of said metal materials is deposited, each of said specialized areas (33-40) being codified depending on the type of metal materials deposited therein and containing metal materials with homogeneous characteristics, in that at least its own distinct loading mean (19-22) is associated to each of said specialized areas (33-40), and in that during said pick-up and loading step, a processing device (50) controls and commands the actuation of one or more of said specific loading means (19-22) which pick up selected types of materials (23-30) from one and/or another of said specialized areas (33-40) in relation to the final metallurgical properties of the product to be obtained and in relation to an optimization of the energy consumption required to set off the melting process and load them onto said feed means (12).

2. Method as in claim 1, characterized in that it comprises a step of detecting the quantity and/or the volumetric profile of the types of materials (23-30) present in at least some of said specialized areas (33-40).

3. Method as in any claim hereinbefore, characterized in that said processing device (50) interacts with the functioning of said feed means (12) and loading means (19-22) to perform the required functions correlated to the state of progress of the melting process.

4. Method as in any claim hereinbefore, characterized in that during said pick-up and loading step said processing device (50) provides to coordinate the actuation of gantries (15-18), cranes (19-22), and pick-up equipment (41, 42) of said types of materials (23-30).

5. Method as in claim 4, characterized in that during said pick-up and loading

step said processing device (50) determines motion laws of the gantries (15-18), of the cranes (19-22) and of the pick-up equipment (41, 42).

6. Method as in claim 4 or 5, characterized in that sensors (43) are associated to at least one of either said gantries (15-18), cranes (19-22), and pick-up equipment (41, 42) to determine the quantity of metal material picked up on each occasion by the pick-up equipment (41, 42).

7. Apparatus for managing the metal charge (11) in a melting furnace (14) comprising a storage zone (13) in which distinct metal materials are deposited in a plurality of differentiated types, said differentiated types comprising at least low value scrap, scrap with a greater value, cast iron slabs or other, and loading means (19-22) provided to pick up said materials from said storage zone (13) and to load them onto feed means (12), said feed means (12) unloading said metal materials into said melting furnace (14), characterized in that said storage zone (13) is divided into a plurality of distinct and specialized areas (33-40), each of which is suitable to receive a differentiated type of materials (23-30) of said materials, each of said distinct areas having a code depending on the type of metal materials deposited therein and containing metal materials with homogeneous characteristics, in that at least its own and distinct loading mean (19-22) is associated to each of said specialized areas (33-40), and in that it also comprises a processing device (50) provided to control and command the actuation of one or more of said loading means (19-22) in order to pick up said types of materials (23-30) from one and/or the other of said specialized areas (33-40) in relation to the final metallurgical properties of the product to be obtained and in relation to an optimization of the energy consumption required to set off the melting process and load them onto said feed means (12).

8. Apparatus as in claim 7, characterized in that it comprises detection devices (55) provided to detect at least the quantity and/or the volumetric profile of the types of materials (23-30) present in at least some of said specialized areas (33-40).

9. Apparatus as in claim 8, characterized in that said detection devices (55) are chosen from a group comprising laser brush sensors, camera sensors and X-ray sensors.

10. Apparatus as in any claim from 7 to 9, characterized in that proximity

devices (45) to control the movement and positioning of said loading means (19-22) are associated to at least some of said loading means (19-22) and to said processing device (50).

11. Apparatus as in any claim from 7 to 10, characterized in that said processing device (50) is connected to at least one of either a first processor (51) and a second processor (52) which respectively command and control said feed means (12) and said melting furnace (14).

12. Apparatus as in any claim from 7 to 11, characterized in that said loading means (19-22) comprise at least gantries (15-18), cranes (19-22) and pick-up equipment (41, 42) of said types of materials (23-30).

13. Apparatus as in claim 12, characterized in that sensors (43) to detect the quantity of material picked up by said pick-up equipment (41, 42) are associated to at least one of either said gantries (15-18), cranes (19-22) and pick-up equipment (41, 42).