Processing

Please wait...

Settings

Settings

Goto Application

1. WO2012140485 - GAS COMPONENT DETECTION DEVICE

Publication Number WO/2012/140485
Publication Date 18.10.2012
International Application No. PCT/IB2012/000693
International Filing Date 05.04.2012
IPC
G01N 21/3504 2014.01
GPHYSICS
01MEASURING; TESTING
NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
21Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
17Systems in which incident light is modified in accordance with the properties of the material investigated
25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
35using infra-red light
3504for analysing gases, e.g. multi-gas analysis
G01N 21/35 2014.01
GPHYSICS
01MEASURING; TESTING
NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
21Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
17Systems in which incident light is modified in accordance with the properties of the material investigated
25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
35using infra-red light
CPC
G01N 21/17
GPHYSICS
01MEASURING; TESTING
NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
21Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
17Systems in which incident light is modified in accordance with the properties of the material investigated
G01N 21/3504
GPHYSICS
01MEASURING; TESTING
NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
21Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
17Systems in which incident light is modified in accordance with the properties of the material investigated
25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
35using infra-red light
3504for analysing gases, e.g. multi-gas analysis
Applicants
  • パナソニック株式会社 PANASONIC CORPORATION [JP]/[JP] (AllExceptUS)
  • 松島 俊輔 MATSUSHIMA, Shunsuke [JP]/[JP] (UsOnly)
  • 古久保 英一 FURUKUBO, Eiichi [JP]/[JP] (UsOnly)
Inventors
  • 松島 俊輔 MATSUSHIMA, Shunsuke
  • 古久保 英一 FURUKUBO, Eiichi
Agents
  • 第一特許法人 FIRSTLAW P.C.
Priority Data
2011-08689111.04.2011JP
Publication Language Japanese (JA)
Filing Language Japanese (JA)
Designated States
Title
(EN) GAS COMPONENT DETECTION DEVICE
(FR) DISPOSITIF DE DÉTECTION DE COMPOSANTS GAZEUX
(JA) 気体成分検出装置
Abstract
(EN)
Decrease in the amount of infrared received, due to the incidence angle-dependence of a wavelength filter, is minimized. The optical path of infrared (see the broken lines in FIG. 1) is modified to an approximate "C" shape by a first reflecting mirror (80) and a second reflecting mirror (81). Therefore, the incidence angle of infrared of a wavelength filter (5) (here and subsequently, refers to the angle formed with respect to the normal direction of the surface of the wavelength filter (5)) can be substantially zero degrees, and the wavelength filter (5) can be made less susceptible to the effects of incidence angle-dependence, as compared with the prior art. As a result, the amount of infrared passing though the wavelength filter (5) and reaching a photoreceptor section (4) can be increased, and any decline in the accuracy of detecting gas components can be minimized.
(FR)
La diminution de la quantité de rayonnement infrarouge reçu, en raison de la dépendance de l'angle d'incidence d'un filtre de longueur d'onde, est minimisée. Le chemin optique du rayonnement infrarouge (voir les pointillés à la figure 1) est modifié en une forme sensiblement de "C" par un premier miroir réfléchissant (80) et un second miroir réfléchissant (81). Par conséquent, l'angle d'incidence du rayonnement infrarouge d'un filtre de longueur d'onde (5) (qui ici et par la suite fait référence à l'angle formé par rapport à la direction normale de la surface du filtre de longueur d'onde (5)) peut être sensiblement de zéro degré, et le filtre de longueur d'onde (5) peut être moins sensible aux effets de dépendance de l'angle d'incidence, en comparaison avec l'art antérieur. En conséquence, la quantité de rayonnement infrarouge passant à travers le filtre de longueur d'onde (5) et atteignant une section de photorécepteur (4) peut être augmentée, et toute baisse de la précision de la détection de composants gazeux peut être minimisée.
(JA)
波長フィルタの入射角依存性に起因した赤外線受光量の減少を抑制する。第1反射鏡80と第2反射鏡81によって赤外線の光路(図1の破線参照)が略コ字形に変更されている。そのため、波長フィルタ5の赤外線の入射角(波長フィルタ5表面の法線方向との為す角。以下、同じ。)がほぼ零度となっており、従来例に比べて波長フィルタ5の入射角依存性の影響を受け難くすることができる。その結果、波長フィルタ5を通過して受光部4に到達する赤外線量を増やすことができて気体成分の検出精度の低下を抑制することができる。
Also published as
Latest bibliographic data on file with the International Bureau