WIPO logo
Mobile | Deutsch | Español | Français | 日本語 | 한국어 | Português | Русский | 中文 | العربية |
PATENTSCOPE

Search International and National Patent Collections
World Intellectual Property Organization
Search
 
Browse
 
Translate
 
Options
 
News
 
Login
 
Help
 
Machine translation
1. (WO2010121422) CONNECTIVITY SIMILARITY BASED GRAPH LEARNING FOR INTERACTIVE MULTI-LABEL IMAGE SEGMENTATION
Latest bibliographic data on file with the International Bureau   

Pub. No.:    WO/2010/121422    International Application No.:    PCT/CN2009/071402
Publication Date: 28.10.2010 International Filing Date: 22.04.2009
IPC:
G06K 9/40 (2006.01)
Applicants: PEKING UNIVERSITY [CN/CN]; 3214 Jun Zhai #5 Yi He Yuan Road, Haidian District Beijing 100871 (CN) (For All Designated States Except US).
ZHOU, Bingfeng [CN/CN]; (CN) (For US Only).
MU, Yadong [CN/CN]; (CN) (For US Only)
Inventors: ZHOU, Bingfeng; (CN).
MU, Yadong; (CN)
Agent: UNITALEN ATTORNEYS AT LAW; 7th Floor, Scitech Place No.22, Jian Guo Men Wai Ave., Chao Yang District Beijing 100004 (CN)
Priority Data:
Title (EN) CONNECTIVITY SIMILARITY BASED GRAPH LEARNING FOR INTERACTIVE MULTI-LABEL IMAGE SEGMENTATION
(FR) SIMILITUDE DE CONNECTIVITÉ SUR LA BASE D'UN APPRENTISSAGE GRAPHIQUE POUR UNE SEGMENTATION D'IMAGE À MULTIPLES ÉTIQUETTES INTERACTIVES
Abstract: front page image
(EN)A system and method of connectivity-based image processing to identify and extract objects in image data. Variations on the method may include iterative local smoothing operations and various algorithmic solutions to improve real-time processing. Variations may also include object extraction processes based on user-provided information about an object in an image.
(FR)L'invention porte sur un système et sur un procédé de traitement d'image par connectivité pour identifier et extraire des objets dans des données d'image. Des variantes du procédé peuvent comprendre des opérations de lissage local itératif et diverses solutions algorithmiques pour améliorer un traitement en temps réel. Des variantes peuvent également comprendre des processus d'extraction d'objets sur la base d'informations fournies par l'utilisateur concernant un objet dans une image.
Designated States: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
African Regional Intellectual Property Organization (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW)
Eurasian Patent Organization (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)
European Patent Office (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR)
African Intellectual Property Organization (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
Publication Language: English (EN)
Filing Language: English (EN)