Processing

Please wait...

PATENTSCOPE will be unavailable a few hours for maintenance reason on Tuesday 25.01.2022 at 9:00 AM CET
Settings

Settings

Goto Application

1. WO2004111319 - SACRIFICIAL TEMPLATE METHOD OF FABRICATING A NANOTUBE

Publication Number WO/2004/111319
Publication Date 23.12.2004
International Application No. PCT/US2003/039200
International Filing Date 08.12.2003
IPC
C30B 23/00 2006.1
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
23Single-crystal growth by condensing evaporated or sublimed materials
C30B 23/02 2006.1
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
23Single-crystal growth by condensing evaporated or sublimed materials
02Epitaxial-layer growth
C30B 25/04 2006.1
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
25Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour deposition growth
02Epitaxial-layer growth
04Pattern deposit, e.g. by using masks
C30B 25/12 2006.1
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
25Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour deposition growth
02Epitaxial-layer growth
12Substrate holders or susceptors
C30B 25/18 2006.1
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
25Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour deposition growth
02Epitaxial-layer growth
18characterised by the substrate
C30B 29/06 2006.1
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
29Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
02Elements
06Silicon
CPC
B82B 3/00
BPERFORMING OPERATIONS; TRANSPORTING
82NANOTECHNOLOGY
BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
3Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
B82Y 30/00
BPERFORMING OPERATIONS; TRANSPORTING
82NANOTECHNOLOGY
YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
30Nanotechnology for materials or surface science, e.g. nanocomposites
C30B 29/16
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL-GROWTH
29Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
10Inorganic compounds or compositions
16Oxides
C30B 29/406
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL-GROWTH
29Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
10Inorganic compounds or compositions
40AIIIBV compounds ; wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
403AIII-nitrides
406Gallium nitride
C30B 29/602
CCHEMISTRY; METALLURGY
30CRYSTAL GROWTH
BSINGLE-CRYSTAL-GROWTH
29Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
60characterised by shape
602Nanotubes
H01L 21/00
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
Applicants
  • THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US]/[US] (AllExceptUS)
  • YANG, Peidong [CN]/[US] (UsOnly)
  • HE, Rongrui [CN]/[US] (UsOnly)
  • GOLDBERGER, Joshua [US]/[US] (UsOnly)
  • FAN, Rong [CN]/[US] (UsOnly)
  • WU, Yiying [CN]/[US] (UsOnly)
  • LI, Deyu [CN]/[US] (UsOnly)
  • MAJUMDAR, Arun [US]/[US] (UsOnly)
Inventors
  • YANG, Peidong
  • HE, Rongrui
  • GOLDBERGER, Joshua
  • FAN, Rong
  • WU, Yiying
  • LI, Deyu
  • MAJUMDAR, Arun
Agents
  • O'BANION, John, P.
Priority Data
60/432,10409.12.2002US
60/454,03811.03.2003US
60/461,34608.04.2003US
Publication Language English (en)
Filing Language English (EN)
Designated States
Title
(EN) SACRIFICIAL TEMPLATE METHOD OF FABRICATING A NANOTUBE
(FR) PROCEDE DE FABRICATION DE NANOTUBES AVEC MODELE SACRIFICIEL
Abstract
(EN) Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar 'epitaxial-casting' approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.
(FR) Cette invention se rapporte à des procédés servant à fabriquer des nanotubes uniformes et consistant à cet effet à synthétiser des nanotubes sous la forme de gaines sur des modèles de nanofils, par exemple en utilisant la technique de dépôt en phase vapeur par procédé chimique. On utilise par exemple des nanofils en oxyde de zinc monocristallin (ZnO) comme modèles sur lesquels est déposé par croissance épitaxiale du nitrure de gallium (GaN). Les modèles de ZnO sont ensuite retirés, par exemple par réduction thermique et évaporation. Les nanotubes de GaN monocristallins ainsi terminés possèdent de préférence des diamètres internes compris entre 30 et 200 nm, et des épaisseurs de paroi comprises entre 5 et 50 nm. Des études par microscopie électronique à transmission ont montré que les nanotubes ainsi produits sont monocristallins avec une structure de wurtzite et ils sont orientés dans la direction <001>. Cette invention concerne en particulier des nanotubes monocristallins en matériaux ayant une structure cristalline non lamellaire. Des approches de « moulage épitaxiale » similaires peuvent être utilisées pour produire des réseaux et des nanotubes monocristallins en d'autres matériaux solides et en semi-conducteurs. Cette invention concerne en outre la fabrication de nanotubes à gaines multiples et de nanotubes à multiples segments longitudinaux.
Latest bibliographic data on file with the International Bureau