Processing

Please wait...

Settings

Settings

Goto Application

1. WO2004002880 - PROCESS FOR UTILIZATION OF A COLD-FLAME VAPORIZER IN AUTO-THERMAL REFORMING OF LIQUID FUEL

Publication Number WO/2004/002880
Publication Date 08.01.2004
International Application No. PCT/US2003/020274
International Filing Date 26.06.2003
Chapter 2 Demand Filed 27.01.2004
IPC
C01B 3/38 2006.01
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF
3Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
02Production of hydrogen or of gaseous mixtures containing hydrogen
32by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
34by reaction of hydrocarbons with gasifying agents
38using catalysts
C01B 3/48 2006.01
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF
3Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
02Production of hydrogen or of gaseous mixtures containing hydrogen
32by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
34by reaction of hydrocarbons with gasifying agents
48followed by reaction of water vapour with carbon monoxide
H01M 8/04 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
8Fuel cells; Manufacture thereof
04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
H01M 8/06 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
8Fuel cells; Manufacture thereof
06Combination of fuel cells with means for production of reactants or for treatment of residues
CPC
C01B 2203/0244
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
2203Integrated processes for the production of hydrogen or synthesis gas
02Processes for making hydrogen or synthesis gas
0205containing a reforming step
0227containing a catalytic reforming step
0244the reforming step being an autothermal reforming step, e.g. secondary reforming processes
C01B 2203/0255
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
2203Integrated processes for the production of hydrogen or synthesis gas
02Processes for making hydrogen or synthesis gas
025containing a partial oxidation step
0255containing a non-catalytic partial oxidation step
C01B 2203/0283
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
2203Integrated processes for the production of hydrogen or synthesis gas
02Processes for making hydrogen or synthesis gas
0283containing a CO-shift step, i.e. a water gas shift step
C01B 2203/044
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
2203Integrated processes for the production of hydrogen or synthesis gas
04containing a purification step for the hydrogen or the synthesis gas
0435Catalytic purification
044Selective oxidation of carbon monoxide
C01B 2203/047
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
2203Integrated processes for the production of hydrogen or synthesis gas
04containing a purification step for the hydrogen or the synthesis gas
0465Composition of the impurity
047the impurity being carbon monoxide
C01B 2203/066
CCHEMISTRY; METALLURGY
01INORGANIC CHEMISTRY
BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; ; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
2203Integrated processes for the production of hydrogen or synthesis gas
06Integration with other chemical processes
066with fuel cells
Applicants
  • GENERAL MOTORS CORPORATION [US]/[US]
Inventors
  • DA SILVA, Jader, Matos
  • HERMANN, Ingo
Agents
  • DESCHERE, Linda, M.
Priority Data
10/186,08328.06.2002US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) PROCESS FOR UTILIZATION OF A COLD-FLAME VAPORIZER IN AUTO-THERMAL REFORMING OF LIQUID FUEL
(FR) PROCEDE D'UTILISATION D'UN EVAPORATEUR A FLAMME FROIDE POUR LE REFORMAGE EXOTHERMIQUE D'UN COMBUSTIBLE LIQUIDE
Abstract
(EN)
A fuel processing sub-system is provided and includes a cold-flame vaporizer in fluid communication with an auto-thermal reformer. The cold-flame vaporizer operates within a temperature range of approximately 310°C to 500°C for enabling a cold-flame reaction, whereby partial oxidization of a volume of fuel occurs for producing heat. The produced heat is used to vaporize the remaining volume of fuel and superheat a volume of saturated steam supplied to the cold-flame vaporizer. The vaporized fuel, water (steam) and a supply of air are efficiently mixed within the cold-flame vaporizer for supply to the auto-thermal reformer at a temperature below 500°C. In order to ensure the cold-flame reaction, the cold-flame vaporizer is operated with an O/C ratio of 0.5 to 2.3, an S/C ratio of 1.5 to 3.0 and a pressure of 1.5 to 3.0 bar-g. In this manner, turndown ratios are achievable for applications having transient power demands.
(FR)
L'invention porte sur un sous-système de traitement de combustible comporter un évaporateur à flamme froide communicant avec un reformeur exothermique. L'évaporateur fonctionne à l'intérieur d'une plage de température d'environ 310 °C à 500 °C permettant une réaction à flamme froide où se produit une oxydation partielle exothermique d'un certain volume de combustible. La chaleur produite sert à vaporiser le volume restant de combustible et à surchauffer un volume de vapeur saturée fourni à l'évaporateur. Le combustible vaporisé, l'eau (sous forme de vapeur) et un apport d'air, efficacement mélangés dans l'évaporateur, alimentent le reformeur à une température inférieure à 500 °C. Pour garantir la réaction à flamme froide, l'évaporateur fonctionne avec un rapport O/C de 0,5 à 2,3, un rapport S/C de 1,5 à 3,0 et sous une pression de 1,5 à 3,0 bars. On peut ainsi obtenir des taux variables de débit pour des applications à demande de puissance transitoire.
Also published as
DE10392845
Latest bibliographic data on file with the International Bureau