Processing

Please wait...

Settings

Settings

1. WO2000044072 - OPTICAL AMPLIFIER

Publication Number WO/2000/044072
Publication Date 27.07.2000
International Application No. PCT/US2000/001811
International Filing Date 26.01.2000
Chapter 2 Demand Filed 26.09.2000
IPC
H01S 3/10 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
3Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
H01S 3/23 2006.01
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
3Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
23Arrangement of two or more lasers not provided for in groups H01S3/02-H01S3/14113
H04B 10/18 2006.01
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
12Transmission through light guides, e.g. optical fibres
18Arrangements for reducing or eliminating distortion or dispersion, e.g. equalisers
H04J 14/02 2006.01
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
JMULTIPLEX COMMUNICATION
14Optical multiplex systems
02Wavelength-division multiplex systems
CPC
H01S 2301/04
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
2301Functional characteristics
04Gain spectral shaping, flattening
H01S 3/10023
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
3Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
10007in optical amplifiers
10023by functional association of additional optical elements, e.g. filters, gratings, reflectors
H01S 3/2333
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
3Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
2308Amplifier arrangements, e.g. MOPA
2325Multi-pass amplifiers, e.g. regenerative amplifiers
2333Double-pass amplifiers
H04B 10/2537
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
BTRANSMISSION
10Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
25Arrangements specific to fibre transmission
2507for the reduction or elimination of distortion or dispersion
2537due to scattering processes, e.g. Raman or Brillouin scattering
H04J 14/0201
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
JMULTIPLEX COMMUNICATION
14Optical multiplex systems
02Wavelength-division multiplex systems
0201Add-and-drop multiplexing
H04J 14/0206
HELECTRICITY
04ELECTRIC COMMUNICATION TECHNIQUE
JMULTIPLEX COMMUNICATION
14Optical multiplex systems
02Wavelength-division multiplex systems
0201Add-and-drop multiplexing
0202Arrangements therefor
0206Express channels arrangements
Applicants
  • CIENA CORPORATION [US/US]; Legal Dept. 1201 Winterson Road Linthicum, MD 21090, US
Inventors
  • MIZRAHI, Victor; US
Agents
  • SOLTZ, David, L.; CIENA Corporation Legal Dept. 1201 Winterson Road Linthicum, MD 21090, US
Priority Data
09/258,23826.01.1999US
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) OPTICAL AMPLIFIER
(FR) AMPLIFICATEUR OPTIQUE
Abstract
(EN)
Amplifier (700) includes an optical circulator (710) that receives an optical signal through a first port (710-1) and outputs the signal to doped fiber (712) through second port (710-2). Pump light is supplied to doped fiber (712) from pump laser (716) via a filtering element, such as in-fiber Bragg grating (714), which is typically designed to reflect light at the desired signal wavelength, but transmit other wavelengths. Accordingly, signal light output from second port (710-2) is reflected back through fiber (712) by grating (714) to second port (710-2) and experiences gain during each pass through fiber (712). The reflected light is then output from a third port (710-3) and passes through an optical dielectric filter (618) to receiver (315). Filter (618) can be provided to reduce ASE. In addition to or instead of filter (618), dielectric filter (735) can be provided at the output of pump laser (716). Typically, filter (735) is configured to transmit light at the pump laser wavelength (980nm or 1480nm, for example), but substantially reflect light at other wavelengths including ASE and signal light. Accordingly, pump laser (716) is effectively isolated from any ASE or signal light passing through grating (714) which could otherwise adversely affect performance of pump laser (716).
(FR)
Selon cette invention, un amplificateur (700) comprend un circulateur optique (710) qui reçoit un signal optique à travers un premier orifice (710-1) et envoie ce signal à une fibre dopée (712) à travers un deuxième orifice (710-2). Un laser de pompage (716) envoie une lumière de pompage à la fibre dopée (712) à travers un élément tel qu'un réseau de Bragg (714) intégré à la fibre, qui est généralement conçu pour réfléchir la lumière avec la longueur d'onde de signal désirée mais peut transmettre d'autres longueurs d'ondes. La lumière de signalisation émise à partir d'un deuxième orifice (710-2) est renvoyée en arrière à travers la fibre (712) par le réseau (714) vers le deuxième orifice (710-2); elle acquiert du gain à chaque passage par la fibre (712). La lumière réfléchie est ensuite émise depuis un troisième orifice (710-3) et passe à travers un filtre optique diélectrique (618) en direction du récepteur (315). Le filtre (618) peut servir à réduire l'émission stimulée amplifiée (ASE). En complément ou à la place du filtre (618), on peut installer un filtre diélectrique (735) à la sortie du laser de pompage (716). De manière générale, le filtre (735) est configuré pour transmettre la lumière à la longueur d'onde du laser de pompage (par exemple, à 980nm ou à 1480nm), mais réfléchit sensiblement la lumière à d'autres longueurs d'ondes, y compris à celles d'ASE et de la lumière de signal. Le laser de pompage (716) est efficacement isolé de n'importe quel ASE ou lumière de signal qui passe à travers le réseau (714) et qui, dans le cas contraire, pourrait affecter négativement les performances du laser de pompage (716).
Also published as
Latest bibliographic data on file with the International Bureau