Processing

Please wait...

Settings

Settings

Goto Application

1. WO1999008307 - METHOD FOR MONITORING THE PERFORMANCE OF AN ION IMPLANTER USING REUSABLE WAFERS

Publication Number WO/1999/008307
Publication Date 18.02.1999
International Application No. PCT/US1998/006888
International Filing Date 07.04.1998
Chapter 2 Demand Filed 18.01.1999
IPC
H01J 37/304 2006.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
37Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
30Electron-beam or ion-beam tubes for localised treatment of objects
304Controlling tubes by information coming from the objects, e.g. correction signals
H01L 21/66 2006.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
66Testing or measuring during manufacture or treatment
H01L 23/544 2006.1
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
23Details of semiconductor or other solid state devices
544Marks applied to semiconductor devices, e.g. registration marks, test patterns
CPC
H01J 2237/30433
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
2237Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
30Electron or ion beam tubes for processing objects
304Controlling tubes
30433System calibration
H01J 2237/31701
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
2237Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
30Electron or ion beam tubes for processing objects
317Processing objects on a microscale
31701Ion implantation
H01J 37/304
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
37Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
30Electron-beam or ion-beam tubes for localised treatment of objects
304Controlling tubes by information coming from the objects ; or from the beam; , e.g. correction signals
H01L 22/20
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
22Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
H01L 22/34
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
22Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
Applicants
  • ADVANCED MICRO DEVICES, INC. [US]/[US]
Inventors
  • ROHNER, Don, R.
Agents
  • DRAKE, Paul, S.
  • PICKER, Madeline, M.
Priority Data
08/906,32605.08.1997US
Publication Language English (en)
Filing Language English (EN)
Designated States
Title
(EN) METHOD FOR MONITORING THE PERFORMANCE OF AN ION IMPLANTER USING REUSABLE WAFERS
(FR) PROCEDE PERMETTANT DE CONTROLER LES PERFORMANCES D'UN IMPLANTEUR IONIQUE UTILISANT DES PLAQUETTES REUTILISABLES
Abstract
(EN) Low-mass implants, for example hydrogen and helium ions, are used in place of more typical dopants like boron, phosphorus, and arsenic for testing the performance of ion implanters. Consistency between ion implantation test runs with the low-mass ions may be used to provide information about the proper operation of ion implanters. Lower-mass ions do not transfer as much of their energy to the wafer as heavier ions. Consequently, high energy ion implantations with low-mass ions do not repair wafer surface damage to the same degree as ion implantations with high-mass ions. When sufficient surface damage exists, a thermowave tool can detect the damage and provide information about the performance of the ion implanter. This determination can be made in a one-step method. An additional advantage to implanting the test wafers with low-mass ions is being able to reuse the wafers for subsequent test runs. When low-mass implants are used (such as hydrogen and helium), a thermal anneal subsequent to the ion implantation can repair any damage to the crystal and at the same time dissociate the low-mass dopants from the silicon crystal. The crystal is returned in its original condition after the escape of the low-mass dopants. If reusability is the highest priority, silicon ions may be used as the test species. Implanted silicon ions can cause measurable damage to the surface of the wafer. A calibration state of the ion implanter may then be determined by examining the surface damage. A subsequent thermal anneal can repair the damage to the surface and return the crystal to its original state.
(FR) Cette invention traite d'implants de masse faible, par exemple des ions d'hydrogène et d'hélium, utilisés à la place de dopants plus classiques tels que le boron, le phosphore et l'arsenic et ce, en vue de tester les performances d'implanteurs ioniques. La cohérence entre les implantations ioniques test à ions de masse faible peut être utilisée pour fournir des informations concernant le fonctionnement propre de l'implanteur ionique. Les ions de faible masse ne transfèrent pas autant d'énergie à la plaquette que des ions plus lourds. Par conséquent, les implantations ioniques à haute énergie à ions de masse faible ne réparent pas les dommages subis par la surface de la plaquette de la même manière que le permettent les implantations ioniques à ions de masse élevée. Lorsque les dommages subis par la surface sont suffisants, un instrument thermoonde peut déceler ces dommages et fournir des informations relatives aux performances de l'implanteur ionique. Cette détermination peut être effectuée en une seule étape. L'un des avantages supplémentaires de l'implantation de plaquettes test à ions de masse faible, est la possibilité de réutiliser ces plaquettes lors de tests ultérieurs. Lorsque des implants de masse faible sont utilisés, (tels que de l'hydrogène et de l'hélium), un recuit thermique ultérieur à l'implantation ionique peut réparer tous les dommages subis par le cristal et, simultanément, dissocier les dopants à ions de masse faible du cristal de silicium. Ce cristal retrouve son état d'origine après la fuite desdits dopants. Si la réutilisation est la priorité, les ions de silicium peuvent être utilisés en tant qu'espèces test. Les ions de silicium implantés peuvent provoquer des dégâts mesurables à la surface de la plaquette. Un état d'étalonnage de l'implanteur ionique peut alors être déterminé grâce à l'examen des dégâts subis par la surface. Un recuit thermique ultérieur peut réparer les dommages subis par la surface et permettre le retour à l'état d'origine du cristal.
Related patent documents
Latest bibliographic data on file with the International Bureau